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ABSTRACT

An efficient and user-oriented method has been construct J for calculating

flow in and about compIex inlet configurations. Efficiency is attained by: the

use of a panel method, a technique of superposition for obtaining solutions at

any inlet operating condition, and employment of an advanced matrix-iteration

technique for solving large full systems of equations, including the nonlinear

equations for the Kutta condition. User concerns are addressed by the provi-

sion of several novel graphical output options that, taken together, y_old a

more complete comprehension of the fIowfie|d than had been possible previously.

ExampIes of these features are presented for some complicated configurations.
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Dipole derivative along an N-line. Subscripts F and S denote values

on first and second N-lines of a panel, respectively. Subscript K
denotes value associated with K-th lifting strip (Fig. l).

Geometric constant for a panel designed to minimize dipole dl on-
tinuity along a lifting strip.

tGeermOmetricconstants expressing source derivative on a panel in
oT vamues of source density on surrounding panels.
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Integer s.bscripts denoting I_! number.

Unit vectors along axis of Cartesian coordinate system. Subscript e
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Subscripts 32, 41. Slope of a panel side.
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Curve along which input points are distributed. On lifting portions
it defines a wing section (Fig. 1).
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1.0 INTRODUCTION

The present work consists of the construction of a computer program for analyz-

ino flow in and about very co_licated three-dimensional inlet configurations.

The basic calculational technique is a panel method, whose choice is dictated

by considerations of numerical efficiency and geometric generality. Such a

method can calculate flow about virtually any passive configuration in a rou-

tine fashion. An inlet, however, is active in the sense that it contains

complicated internal machinery that controls the amount of fluid that enters.

For the present purpose, it is not necessary or even desirable to analyze this

machinery in detail. Instead, its effect is lumped into a single parameter,

namely the mass flov through the inlet. This situation is _._en most clearly

in the static case vberetbe inlet is attest ln anotkervtseuwJtsturbed

fluid. Here the omly fluid motion tsthatdue to lmjestionof fluid by tbe

inlet. The difference betveenamethod applicable to inlets and a method for

passive bod]es ts that tbeformermstcontatn a calc-alational devlceforcon-

troliiegmass flmethroughtbetnlet. As wt]1 be seen, thts requtrement is

equivalent to a calculational devicefor gemerattng a static solution.

Reference 1 describes a method for calculating flow about simple three-

dimensional inlets by means of a first-order panel method. Reference 2 pre-

sents a procedure applicable to inlets having auxiliary inlets which uses a

higher-order panel method. The present program generalizes this last to the

case of inlets having leading-edge slats. Thus this method must account for

lifting effects, while that of Ref. 2 did not. This represents a considerable

difference. Not only must the code contain formulas giving the effects of

bound and trailing vorticity, but the iterative matrix solution must be altered

radically to include the nonlinear Kutta condition. Horeover, the user must

now bear the responsibility of specifying the location of the trailing vortex

wake. As far as the code is concerned, the designation "leading-edge slat"

may be interpreted very generally as a lifting portion of the configuration.

Thus the program can consider an inlet mounted on a lifttng wing-pylon

configuration.

It should be pointed out that the rather elaborate scheme outlined here is made

necessary by the requirement to simultaneously analyze flow outside and inside
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the inlet. If only the exterior flow were of interest, the inlet entrance

could be represented by panels on which an inflow velocity distribution is

specified.

This inlet program is thus the latest in a series of panel-method programs,

each of which depends on the previous ones. Two previous inlet programs,

Refs. I and 2, have already been mentioned. The present code is based on the

higher-order lifting panel method of Ref. 3, which in turn is based on the

higher-order nonlifting panel method of Ref. 4, and both are extensions of the

first-order lifting panel method ofRef. 5. Recent documents, notably Refs. 2

a_d 3, refer liberally to the earlier documents. Thus no one docment contains

all the necessary formlas and logicoftheenseableof prograasthatwere

developed up to thts ttme. it wasdecidedtoremedythts situation bTmaking

the present report complete. All Lhe pa_1-eethod formlas and tnlet proced-

ures that pertain to the present code are centained herein. The resulting

mmual |s _mvhat leng--thy, but tt ts coaplete.
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2.0 THE HIGHER-ORDER PANEL HETHOD

2.1 General Description

The panel method here is a higher-order source method. In a source method the

unknown value of source density on each panel is adjusted to satisfy the

normal-velocity boundary condition at the panel control points, while dipole

and/or vorticity is treated as an auxiliary singularity that is used to produce

the lifting effects. In contrast to a first-order panel method (Ref. 5), which

uses a constant source density on flat panels, the higher-order method (Ref. 3)

accounts for source-derivative and surface-curvature effects. As examples will

show, inclusion of these effects can be quite important for internal flows.

The paaeI method of Ref. 3 is the only current method that accounts for locaI

m-face cm,_tm'e despite ualysts that Indicates that a method ts not truly

htglm" ondler tf these effects am ignored (see Section Z.2 belov).

A three-dknsional lifting flow ts characterized by the presence of a tratling

vortex sheet that issues from the trailing edge of the 11fting portion of the

configuration, e.g. a wing or slat (see Figure 1). If more than one ;ifttng

device is present, such a sheet issues from every trailing edge. The location

of the trailing vortex sheet is not known a priori. In the present panel

method the location is simply input by the user based on his experience and

physical intuition. In the case of a wing-fuselage, this issue is unimportant

because the wake is relatively far from all parts of the wing and is weak near

the body. In the inlet case, however, the wake of the slat is ingested and

probably lies close to the inner surface of the inlet. The wake location could

be important, and its estimation might be somewhat difficult, particularly at

angle of attack.

A key issue in any lifting procedure is the method of applying the Kutta con-

dition. Oddly most panel-method publications virtually ignore this question,

presumbly because the authors consider it unimportant. In fact, the Kutta

condition is of first importance, because it determines the circulation dis-

tribution that drives the whole lifting flow. Classically, the Kutta condition

is stated as the avoidance of an infinite velocity at the tratling edge.

Clearly such a condition cannot be enforced numerically, _nd some other
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criterion, which ts a consequence of the Kutta condition, must be tnvoked.

Physica]|y, it .s abso]utely necessary that upper- and loner-surface pressures

on the w|ng must approach a common value at the trailing edge. This is the

form of the Kutta condition emp]oyed tn the present panel method. Oddly no

other panel method uses the equal-pressure Kutta condition. Instead, other

derivative conditions are used. The reason for this is probab]y that the

equa|-pressure condition is non]inear, while the alternate conditions are

]inear, which simp]iftes the numertca] procedure. The price of ]inearity is

high, however, because ca|culated resu]ts can be sertous]y in error. Figure 2

shows ca]culated resu]ts frog Ref. 6. It can be seen that on|y the present

panel method gives equal upper- and louer-surface trailing-edge pressures for

this case. The otlm. methods gtve a pressure wlsmtch of up to hell of free-

streu dy_c pressure.

ltm_kor tNm_mt lecture of the present pare1 mthnd |stts use of an ttero-

ttle ntrlx solution. 11_ "inlet he_ing a cuet_1_, an uutliorll tnTet, aN

one or rare slats ts a very ceml_ configuration, wktck if mmtnd on a

ring-pylon becomes unmchmore cmpllcated. Thus the cases to uhh:h the present

method vt11 be applled tend to have large panel mmbors. For such cases an

iterattve solutton of the 11near equattloes that express the tmmdar7 coedJtton

ts an order of mgnttude faster computattonally than a dire,_ e11udnatton

solution. As ts nell known, the computational effort for an ttorattve solutton

is pruporttonal to the square of the nmber of equations, t.e. to the panel

number, whtle that of the direct solution ts proport|onal to the cube. Thus

the advantage of the former becomes greater as the panel number increases and

as the computation ttme becomes a sore tq)ortant factor. For the tterattve

solution to realize this advantage, tt must converge reltably tn a relat|vely

mall nmber of iterations, say 10-20. As reported tn Ref. 2, an accelerated

block Gauss-Stedel achteved th|s efficiency tn the nonltfttng paine1 method.

The addttton of 11ft produces a mjor c_pltcatton tn that the values of bound

vorttc|ty uust be tncluded among the unknoms and the set of equations must

contatn those expressing the Kutta conditions at var|ous span locations along

the tra|l|ng edges. As mentioned above, these last are nonlinear. The stand-

ard "bevton-type" method for solvtng sets of nonlinear equations conststs of

successive ltneartzattons folloved by Iteration. That ts, tn each |teretton a

set of linear equations is solved, but the coefficient mtrtx changes with

" 3495H 4



each iteration. This alternative type of iteration was incorporated into the

basic block Gauss-Siedel scheme, and after a restructuring of the acceleration

procedure, a reliable method was obtained. The number of iterations required

for convergence is increased 30% compared to the nonlifting case.

2.2 Consistency Analysis

One of the distinguishing features of panel methods is thet the velocity due

to a panel singularity is computed analytically, as contrasted with other

so-called ,boundary-element" methods where numerical quadratures are e_loyed.

This feature is rendered necessary by the requirement faced by a practical

panel method that panel dimensions are often larger than characteristic physi-

cal dimensions of the boundary. For example, in the mtdch_d mid-semi-span

region of a wtng the spamtse dtmenstoe of pmels ts normlly an order of mxj-

nttude larger than the local vtng th_kness (Fig. 1). The integrals ever a

paine1 giving the potentials and/or velecttIes due to various s|ngulartty dls-

trtbutt_ can be integrated analytically only tf the panel ts flat. OUher

panel methods have assumed flat panels from the begtmtng and t_er hypothesized

singularity dtstrthutions that are Ueo-v_rtable polynomials of various degrees,

usually ranging froaconstant to quadratic. Investtgatursvho use the poly-

nomials of higher degree tend to label thetrmethods "hlgher-order" and thus

to imply that the increase of accuracy with panel n_ of such a method is

mere rapid than that of a "lover order'method. Such as assertion has been

proven false by direct coeq)artsons of calculated results (Refs. 6 and 7). The

reason is simply that successive refinement of an integrand (the singularity

distribution) without simultaneous refinement of the integration region (the

panel geometry) cannot lead to improved results, because the factors neglected

are more important than the additional factors included.

An alternative approach is to expand the effect of a general panel about its

tangent panel. All relevant quantities can be expanded in Taylor's series

about the tangencypotnt and the tntegral expressed as a sequence of terms each

of "htghurorder" in panel dimension than the precedtng terms. Since all

integrals are over the flat tangent panel, they all can be evaluated analyt-

ically. But the expanded terms contain derivatives of both the singularity

strength and the body shape. The analysts is done in detatl in Appendix A for
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the case of source singularity. It is shown there that a term of a given order

contains derivatives of the surface shape that are one degree higher than the

highest singularity derivative. Thus consistent combinations are: flat-panel/

constant source, paraboloidal panel/linear source, cubic panel/quadratic

source, etc. The same is true for vorticity, which reflects the fact that

vorticity effects can be expressed in terms of source effects (see Appendix H).

Dipole effects have a more complicated expansion due to the fact that a dipole

distribution on a panel is equivalent to a vorticity distribution equal to its

gradient (and thus a polynomial one degree lower) plus a concentrated vortex

filament around the edges of the panel. The present approach uses panel vor-

ticity and adds the appropriate edge vortices.

2.3 i)evelommt of the _ls from I_ Pot.ts

As in all panel =t_hods, the body surface and uuke are input te the cemput_

by specifying the coordinates of a number of points on the surface. These are

associated in groups of four to form the quadrilateral surface panels (Fig. I).

This my be done in a variety of rays. In the present progrm U_e end result

is a trapezoidal tangent panel (Ftg. 3) and various geometric quantities (about

60) associated with it. This is a much smller number of geometric quantities

than many other panel _ethods require. The order of the input points is along

certain curves called N-lines (Fig. 1). On ltfttng portions of the body the

first and last poiats on the N-line are at the trailing edge. The set of

panels formed from the points lying on two consecutive N-lines on a lifting

portion is denoted a lifttng strip of panels.

The initial step in generating the panel consists of using a "canned" routine

for fitting surfaces by parametric blcubic splines. This is appl|ed to each

panel individually to generate the panel coordinate system, the coordinates of

the four corners of the panel in this system, and the three second derivatives

of the surface at the origin of panel coordinates. The panel coordinate origin

is the point of tangency to the surface of the tangent panel and is also the

control point where the normal-velocity boundary condition is applied. The

procedure for doing this is described in Appendix B.
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As shown tn Fig. 3, the corner point coordinates are _K" nK" K - 1, 2, 3, 4.

The lengths of the parallel sides are:

d]2 = dF = E2 - El'

The width of the panel is

d43 = ds : _3 - _4

w = n I - n 3

The slanting sides are straight lines with equations of the form

E_ =ran +b

(2.3.1)

(2.3.2)

(2.3.3)

where

E2"E3 r-1 "E4
m32 = w " m41 = - w -

Z_3n2 _ E;2_3 z_4nZ __ z_1n4
b32 = w' ' b41 =

(2.3.4)

The mxtmm dtagonal of the panel ts

t =max / /(E_2 - E4 )2 + (n 2 - n4 )2

/(% - _;1)2 + (n3 - nl) 2

(2.3.5)

Further define

(2.3.6)

The lengths of the slanttng sides are

(132 = wS32 d41 = wS41 (2.3.7)

Also needed for lifttng panels are the total arc lengths along the M-lines from

the tratling edge up to the n-ax|s of the panel in question. These are
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hF = _ dF - El' hs = [ ds " _4
(2.3.8)

where the sums are over the previous panels of the lifting strip.

Finally the normalized moments of the area of the panel are required. The

method of calculating these is in Appendix C.

2.4 Velocities Induced by the Source Distribution on the Panels

Formulas for the velocity induced by an individual panol at a pGint in space

are obtained from the expressions Developed in Appendix A by Differentiating

and then performing the indicated integrations over the flat projected panel.

Different procedures are called for depeadiBI on the distance of the point in

question from the panel. For nearby points, the expressions of Appendix A are

fntegrated exactly. This procedure Is rather |engthy and details are omitted.

Only the final formlas for this "near field" are presented (Appendix D) and

these are the key to the present panel method. It is assumed that the point

in question has been transfomed into the panel coordinate system and aT1 near-

field formulas are given in terms of this coordinate system. For points

further from the panel, the integrals of Appendix A are evaluated by a classic

multipole expansion. The orders of the expansions are selected to he at least

as high as the terms in question. This is a relatively simple procedure ana-

lytically, and the resulting "intermediate field" formulas require much less

computing time than the near-field fomulas (Appendix E). This computation

also is carried out in panel coordinates. The velocities calculated by the

near-field and intermediate-field formulas must be transformed into the refer-

ence coordinate system. For points even further away, a "far-field" approxi-

mation is used (Appendix F). This is obtained simply by retaining only the

first terms in the multipole expansions. However, the far-field formulas have

been put in vector form, and thus they can be evaluated directly in the

so-called reference coordinate system in which the body is input. This elim-

inates the need for transformations and further reduces computing time. Some

of the quantities in the near-field formulas lose numerical significance for

certain ranges of values of the parameters, e.g. control point near the exten-

sion of a side or effect of a very long thin panel on adjacent control points.

Host of these problems are due to the short word length used by IBM computers
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and do not arise for ClX equipment. A variety of special formulas based on

power series expansions have been developed for use in the troublesome situa-

tions. These are collected in Appendix G.

The source potential is given in Eqs. (A.31) through (A.35) of Appendix A. The

velocity induced by the panel is obtained by taking the negative gradient to

obta in

V = _(O)a o + r-P_(P)+ 2Q_(Q) + Rv(R) _"_(IX)ax ÷ _(IY)oY] (2.4.1)

where each individual velocity is the negative gradient of the corresponding

potential.

2.5 The Source Derivative Te_ _. Ass_hl¥ of the llatrix of Influence

Coefficients

2.5.1 The Nmuerical Differential Procedure. Geometric Constants

As stated in Section 2.4, the basic source velocity forraula (2.4.1) contains

coefficients ox and Oy, which are the derivatives of the source density

with respect to the panel's coordinate directions. It is not intended that

these be additional unknowns. Instead, they are expressed in terms of the

unknown values of source density at the control points of the surrounding

panels. Thus, ultimately the values of source density at the control points

of the panels are the only unknowns. The source-derivative procedure is

slightly different for the first and last panels of a strip and for panels of

the first and last strips. However, the modifications are quite straight-

forward. In the initial discussion it is assumed that the panel on which

source derivatives are being evaluated (the panel in question) has adjacent

panels on all four sides as shown in Fig. 4. For the purposes of the present

discussion only, the control points of the adjacent panels are numbered K = O,

1, 2, 3, 4 as shown in Fig. 4, where 0 denotes the element in question. These

control points are transformed into the coordinate system of the panel in

question. Let the _ and n coordinates of these control points be _OK" nOK,

K = O, 1, ..., 4 and the values of source density at the control points be o K,

K = O, 1,...,4 (evidently _00 = nO0 = 0). The differentiation process expresses
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the source derivatives on the panel in questio, in terms of the unknown va]ues

of source density on the adjacent panels in the form

H r(X)oK
ax = K_O vK

It

ay = KT.O C_Y)o K

(2.5.1)

_ere M represents the number of adjacent panels. It is 4 for interior panels,

3 for panels on the edge of a section, and 2 for panels in a corner of a

section.

The essemlLtals of the nmerical process are that it calculates o_-dtmenstonal

derivatives tn the u and v directions of the pacmetrtc-cubic coordinate system

of Appendix A and then expresses the derivatives with respect to the panel

coerdi._ates in t._ms of these.

For each panel, calculate the geometric quantities

_:_[_] + _2"{3-_4 ]'

u : e_/a, 9 : w/a,

(2.5.2)

For the purpose of one-dimensional differentiation, define the coordinates

]
x 2 =-_ (d O+ _]2 )

1
xl : " _ (do + d])'

(2.5.3)

t3 : ½ (ao + a3), t4 =-_ (aO + a4)

where the subscripts are panel designations of Fig. 4. Then centered 3-point

differentiation, which is appropriate in the interior of a section, gives

x2 x l + x2

t 3 t 3 + t 4

ot = t4(t3 - t4) °4-_

x1

o o- x2(x 2 - x1) 02

t 4

oo - t3(t 3 - t41 03

(2.5.4)
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The first of Eqs. (2.5.4) already gives the first of Eqs. (2.5.1). Thus

c_X) = Xl+ x2 c_X) _ x2 c_X) _ Xl
XlX 2 ' Xl{X 2 - xI) ' Xz(X 2 - Xl)

C_x) =C(4x) = 0

(2.5.5)

By analogy the second of Eqs. (2.5.4) gives t-derivative coefficients

, c t)t3+t4 c)t)
C_t) : t4(t 3 - t4) = t3t4 ' : _ t3(t 3 - t 41

clt):c(t):o

(2.5.6)

By the chain rule

or= OxU+ Oy¥ (2.5.7}

Thus

oy=;l(o t- OxU) = K_ ;1(C_ t) - u_X))oK
(z.5.8)

and finally

,=_ (C - u ), K = O, 1, ..., 4 (2.5.9)

For panels on the edge of sections, the centered 3-point formulas (2.5.4) must

be replaced by 2-point one-sided formulas in the direction (or directions)

where a third value does not exist.

2.5.2 Logic of the Assembly Procedure

In the first-ordermthodthe velocity induced by a panel depends only on the

source density on that panel and thus the "influence coefficients" for that

panel are calculated solely froathat panel's geometry. The essentially new

feature of the source derivative procedure is that the velocity induced by a

panel depends on the value of source density at the control point of that panel

and also on the values of source density at the control points of adjacent

e|ements. Similarly, the velocities induced by adjacent elements depend on the

source density on the panel in question. Thus the "influence coefficients" for
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a panel depend not only on the geometry of that panel but also on the geometry

of adjacent panels and the assomblY of the influence coefficient matrix is more

comp 1i cated.

Let the panels be numbered consecutively in the order they have been formed.

Thus, reference is made to the i-th panel and to the j-th panel where both i

and j range from ] to N. Another way of stating the essentially new feature

above is that a distinction must be made between the effect of the j-th a_

and the effect of the j-th value of source density, whereas these two effects

are identical in the first-order method. Let i*|j be the velocity induced at

the i-th control point by the QI-th panel and qtj be the velocity induced at

that point by the _-th valve of source density. Then in the notation of

Soction 2.4 and the present sectt_m,

+ + CO% : f P)p+z¢% + ('*) ,x)+

" +
+ K_I

(2.S.IO)

Notice that subscripts i and j are omitted on the right side of Eq. (2.5.10)

for simplicity. In the overall numbering scheme, oo in (2.5.10) is oj and 01,

02, 03 and o4 have subscripts near j. All velocities in (2.5.10) depend only

on the geometry of the j-th pare1. The curvatures P, Q, R and the coefficients

C_x) and C_,y) depend on the surrounding panels, but once calculated they can

be associated with the j-th panel only.

Consider now the i-th row of the matrix _ij" which expresses the effects of

the various values of source density at the t-th control po4nt. The first

bracketed tern in (2.5.10) is an effect of oj and is added to the J-th

location of the row. The four terms in the sumation of (2.5.10) represent

effects of other values of o and must be added to other locations. Referring

to Fig. 4, it can be seen that the panels nmbered 1 and 2 are on the same

strip as the panel in question and thus represent effects of the preceding and

succeeding values of o. In particular, value 1 is associated with oj. l and

value 2 with d;j+ 1 and the relevant terms of Eq. (2.5.10) are added to those loca-

tions. Panels 3 and 4, however, are on adjacent strips. Suppose there are E

3495H
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panels on each strip. Then value 3 is associated with oj_ E and value 4 with

Oj+E, and the relevant terms of Eq. (2.5.10) are added to these locations of

the row.

2.6 Vorticity Influence of a Panel

2.6.1 Panel Vorticity and the Underlying Dipole Distribution

The effect of a vorticity distribution on a panel cannot be expressed in terms

of a potential, as mentioned above. The velocity induced by the panel of Fig.

8 at a point (x,y,z) is

+vherew is the vector vorttctty strength and

- (x - _)i + (Y - n)_ + (z - ¢)_ (2.5.2)

The distance r has its_ usual meantng, vhtch is also equl to l l, andthe
To insure that the vorticity satisfies the

integral is over the true panel.

usual vorticity conservation theorems over the panel, it is convenient to

express _ in term of equivalent dipole distribution p. As shown in Ref. 5,

the relation is

+ + (Z.6.3)
= -n x gradp

where _ is the unit normal vector, whose components n_, nn, n¢ are 9iven by

Eqs. (A.8) through (A.IO). In Appendix A, 7, _, _ were used as unit vectors

along the axes of the panel coordinate system, because no other coordinate

system entered the discussion. Here, to avoid any possible confusion, these

unit vectors will be written_ e, ]e' _e (Appendix B) to specifY that they are

indeed unit vectors of the panel system. To be compatible with the source

density and panel-geometry expansions, p is taken tohe a quadratic function

of panel coordinates [ and n in

= Po + Px_ ÷ pyn + _x _ + Px_y_n + Pyyn2 (2.6.4)

3495H
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so that the components of _ vary 11nearly over the panel. Furthermore, since

a two-term expansion of the source potential ts all that appears feasible, only

a two-term expansion of Eq. (2.6.1) is required. Evidently

_P
= _x + 2(_xx _; + _xyn)

(2.6.5)

;)_.E=
;)n Py + 2(PxY_; + pyyn)

are two-term expansions of the components of gradp. Then Eq. (2.6.3) gives

(2.6.6)

Two-term expansions of the Te and Je components of (2.6.6) contain zeroth

and first-order tenn. $1nce the leadlng term of the _e coqponent Is 11near,

oqly that one term Is reqelred. The tvo-ter= expans|on of Eq. (2.6.6) I;

(2.6.7)

Nov using Eq. (2.6.7), a tvo-tem eXlxmton of FA. (2.6.1) amy be carried out,

and the resulttn9 veloctty pvt tn term of source Influences. Thts development

is carried ovt tn /qqm_ltx H.

l_e dipole strength is required to vary linearly over the It-lies bounding the

panel. In particular

u = BF(E + hF) on n = ql
(2.6.8)

= 8$(E;+ hs) on n = n3

when th_;e are app11_l to Eq. (2.6.4), tt turns out that p rest have the form

p=;LE;n+i hF,n - _E; " ?F + cw(n - %)(n- nl)]B F

1
- ; L_n + hsn - n1_ - qlhs + cv(n - n3)(n - ql)lBs

(2.6.9)
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Notice that p is expressed as the sumof two dipole distributions: one

multiplying BF that is zero for n = _3 and one multiplying BS that is zero for

n = n1. Thus, one dipole distribution is associated with each N-line. The

logic of the ca]culation keeps these two separate until a later stage of the

calculation. The constants BF and BS are essentially bound vorticity strengths

that are determined by the Kutta condition. It is the distribution multiplying

each that is important at this stage, so in effect the B's _re set equal to

unity. The constants in the underlying dipole distributions are

_-derivative First N-line Second N-line

I + n3)
hS

- ;- + c(n1 + n3)

Pxx 0 0

1 1
laxy _ "

C -C

(2.6.1o)

The foregoing are on-body fonmlas. For wake panels set

PX = Pxx = Pxy = 0

hF : LF (total), hS = LS (total)

(2.6.11)

where L (total) is the total arc length of an N-line from trailing edge to

trailing edge. Equation (2.6.11) reflects the fact that the underlying dipole

strength is constant along N-lines in the wake.

All constants in Eq. (2.6.10) are known except c. It ts determined to make the

dipole strength as continuous as posstble from one panel to the next along a

lifting strtp. Clearly nothtng enforces contfnufty ff there 1s a physical gap

between the panels, so c is determined assumtng that adjacent panels on a

l|fting strtp share a comon side. Thts seems the best that can he done.
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Consider the dipole strength along the "top" side of the panel between the

points (_3' n3) and (_2' n2) (Fig. 3). It is obtained by setting _ = m32n +

b32 in Eq. (2.6.9). The result is

p(32) = p(linear) + (BF - Bs)(CW2 + wm32} [_ (_ - l)] (2.6.12)

In the square bracket s denotes arc length along the side and L the total

length of the side (L = d32 in the notation of Section 2.3). The function

p(linear) is a linear function that varies from the value of p at the point

(_3' n3) to the value of p at the point (_2" !12)" On the adjacent element, the

"bottom" side that lies between the points (_4" q4 ) and (E l, nl) is the one

that lies along the side discussed above. The dipole strength along this side

is

+ - +"41) 1)] (2.6.13)

IgnoriH any stall gaps between elements, the quantities p(ltmear), s, and t

are idemttcal tn (qs. (2.6.10) and (2.6.11), as are BF and BS. The only

quantities that are different are those tn the cwly brackets. Here c and v

correspond to different elements, while the slopes m32 and m41 correspond

to different sides of different elements. Thus continuity betveen panels i

and i + 1 of a strip is obtained If

w(i)[c(i)w(i)+ .,_)]: wi+l)[c (i+1)w(i+l) + m()+l)]

(2.6.14)

where w is panel width (usually the same for all panels of a strip), m32 is

the slope of the upper panel edge and m41 the slope of the lower panel edge.

Eq. (2.6.14) is solved for successive values of c(i) beginning with

c (1) = 0 (Z.6.15)

and proceeding over all on-body panels of the strip. The choice, Eq. (2.6.15),

is arbitraryandexpresses the fact that Eq. (2.6.14) has a nonunique solution.
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2.6.2 Edge Vortices

The fundamental development of Ref. 5 shows that the velocity induced at a

point in space by a dipole distribution p over a panel is identical to the

sum of the velocity induced by a vorticity distribution _, as given by Eq.

(2.6.3), and the velocity due to a concentrated line vortex around the

perimeter of the panel whose variable strength equals the local value of

dipole strength. While the velocity d,Je to the dipole distribution is

inherently a potential flow (zero curl), neither of the other two velocities

are; only their sum is pote_mtia]. Using _ in the form of Eq. (2.6.3) satis-

fies the vorticity conservation theorems over the surface of the panel but not

at its edges. Thus to the vorticity velocity of Appendix H must be added the

effects of line vertices on the edges of the panel with strength equal to the

local value of the underlyin9 dipole distribution. Since an actual body obvi-

ously does not have line verttces tn its svrface, in the abseme of nmertcal

approxhuatton the edge vortices of adjacent panels would cancel exactly. Thus

it might be hoped that the panel edge vortices ¢ovld be ignored amy from

physical edges such as wing ttps. It turns out that thts is true for spmwlse

panel edges but not for stremtsepanel edges. That is, referring to Fig. 1,

the edge vortices of adjacent panels on the same lifting strip cancel to a good

approxinBtion (espectally when the continuity algorithm of Section 2.6.1 is

employed) and thus may be ignored. However, the edge vortices that lte along

an N-line in general do not cancel with those of panels of the adjacent lifting

strip to a degree that justifies their omission.

There are several ways of accounting for the effect of the edge vortex, all of

which are theoretically equivalent to some order of accuracy. The approach

used here is the analogy of that used throughout the higher-order development.

A vortex lying along the edge of a curved panel is projected into the tangent

plane. The relevant formulas are deve]oped in Appendices I and J.

2.6.3 The Trailing Vortex Wake

The wake is input to the program by specifying points along N-lines just as

for on-body points. The option exists of making the last panel on each wake
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strip semi-infinite. In many cases, such as a clean wing, the location of the

wake has very little effect or, the solution. In such cases, the wake may be

taken as semi-infinite right from the trailing edge, and no wake points need

be specified. _is optional wake may have the direction of either the

trailing-edge bisector or the x-axis.

iJake panels have vorticity but no source density. However, because of the way

in which vorticity effects are calculated in the present program, essentia|ly

the same induced-velocity formulas must be evaluated as for on-body panels.

Of course, no boundary conditions are applied on wake panels, and their pres-

ence does not affect the order of the matrix of the linear equations for the

source density.

For finite wake panels, the basic influence formlas are unchanged, but the

constants deftntng the underling dtpole distribution and the edge vertex fom-

ulas are modtfted as descrthed tn the prevtovs sect|ons. Also mxltfied are the

valves of c that improve dipole conttnvtty bel_n panels of a 11ft|ng strip

(Section 2.6.1). Let superscript (1) denote quantities associated wtth the

first on-body elemeet of a ltfttng strip and superscript u denote quantities

associated with the last on-body element of the strip. Similarly, the super-

scripts wl, v2, etc. denote the ftrst rake element, second veke element, etc.

of the same ltfttng strip. The important valoe of c is c (wl), i.e., the one

for the first wake element. It is computed from

w(u)[w(U)c(U) w(1)[w(1)c(|)
c(Wl ) = + ] " + "41 " (2.6.1S)

[wtwl )]z

where the quantities w, m32, m41 have their usual meaning (usually c (1) = 0).

Values o_ c for the remaining wake elements are obtained from

c(wl)[w(Wl)] 2 = c(W2)[w(W2)] 2 = c(W3)[w(w3)] 2 - ... (2.6.16)

In most cases of interest, the trail|ng vortex wake extends to infinity. To

facilitate accounting for this condition, provision has been made for consid-

ering the last element of the wake to be semi-Infinite. A finite element of

the sort shown in Fig. 3 is formed at the end of the wake, including all the

geometric quantities of Section 2.3. The induced veloctty calculation for this
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elenent is perfonmed using the origin of coordinates appropriate to the finite

element, but the formulas used to calculate induced velocities are appropriate

for the semi-i_inite element. Naturally, all points in space are in the "near

field" with respect to a semi-infinite element, so it is the formulas of

Appendix D that apply. These formulas are modified by setting

_2
=0

E_2 ÷ o_ l_3
4" ,co

(2.6.17)

This yields immediately

al" 61" YI' _4' 134" Y4 unchanged

=3

The lol functions, Eq.

L (41) = unchanged, all derivatives unchanged

L (32) = O, all derivatives equal zero

(2.6.18)

=a 2 =-1, _= B2 = Y3 = Y3" 0

(D.3), and tletrderivattves, Eq. (D.6) mrereplacedby

(2.6.19)

r 4 - (x - E4)

_L (12) + L (34) = log ri (x E1 _
(2.6.20)

_L(34) (z4 - 1 _L(12) (z1 - 1

3x = r4 - (x- E4) a_ = rI -(x- El)

aL(34) _ 64 aL(12) 61

ay r 4 - (x- E4 ) ay - r I - (x- ElY
(2.6.21)

aL(34) Y4 aL(12) = Y1

--az - r4_ {x. E4 ) az r 1 - (x- _1 )"

The inverse tangent functions, Eqs. (D.4), and their derivatives, Eqs. (D.5),

are replaced by
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T_41) = unchanged,

k=3or2

k=4orl

(2.6.22)

;)T(32)
_= 0

_x

;)T_32) Z

= %),: '
_2=nl

k=3or2

_T(32) -(y - nk)

= zz + (Y" _k)_
(2.6.23)

aT(k1)
T" unchanged

a1"_41)= unchanged k=4orl

aT_41)
= unchanged

_z

A11 of the quantities of Appendix O are nov recalculated usi.qq these modified

values, except that H02 is replaced by

r 4- r I _ x-m41Y- b41 L(41 )

"o2="41 +"
(2.6.24)

The induced velocities from the last wake element are added to the other dipole

velocities of the lifting strip in the ordi.ary way.

2.6.4 Some Special Situations

Two spectaI situations exist where panels must be pIaced inside the body

surface. Ho normal-velocity boundary condition can be applied at such elements
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and no source density should be applied to thee. However, they do have vor-

ticity and this must be accounted for.

The first situation occurs when a portion of the body i_tersects a liftin9

portion at a finite angle (often nearly normal) without breaking the continuity

of the trailing edge. An example is provided by the wing-pylon intersection

shown in Fig. 5. A certain portion of the lifting body surface is "inside" the

pylon. However, the underlying dipole distribution should be continuous

through this region to avoid numerical difficulties. Thus, as far as vorticity

calculations are concerned, the "inside" panels are nomal members of the lift-

ing strips to which they belong. But they are ignored as far as source calcu-

lations or boundary conditions are concerned. Such panels are designated

-ignored panels." They usually comprise only part of a lifting strip.

The second situation occurs vhen a ltfttng portion of the body intersects

another portion at a finite angle (often nearly normal). The important case

of this is the wing-fuselage intersection, as illustrated in Fig. 6. As is

well-knmm, the local "section lift coefficient" on the wing does not fall to

zero at the fuselage intersection. Thus, the underlying dipole strength on the

N-line lying along the intersection is not zero. However, the lifting section

cannot simply be terminated, because that would result in a concentrated edge

vortex filament right on the surface. Accordingly, an additional or "extra"

lifting strip is added to th_ lifting section (see Fig. 6). It is either the

first or the last strip of the lifting section. The extra strip lies inside

the other body and is a complete lifting strip including wake. Ho source den-

sities or normal-velocity boundary conditions are applied to the panels of the

extra strip. The underlying dipole strength is taken constant in the "span-

wise" direction across the extra strip. The value of the dipole strength on

the extrd strip has nonzero dipole strength and may lead to a concentrated edge

vortex in the streamwise direction. For example, as shown in Fig. 5, _he

vortex may lie along the fuselage centerline and its downstream extens,_r.. If

the lifting configuration has a right-and-left symmetry, e.g., a fuselage with

both wings, and if the flow is also s}_metric, e.g. zero yaw, the extra strips

for the right and left sides have the same strengths on their interior edges.

Thus, in this case the edge vortices cancel. If, however, the lift is not
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symmetric, there will be an edge vortex. This is unavoidable because it is

physically real. An example is the hub vortex of a propeller. This also

occurs at a tip tank, which is essentially a small fuselage with only one wing.

2.6.5 Assembly of the Vorticity Onset Flows

As described in Sections (2.6.1) and (2.6.2), the velocity induced by the vor-

ticity on a panel and the associated edge vortices fall naturally into two

parts - one proportional to the value of B on the first N-line and one propor-

tiona] to the value of B on the second N-line. These are summed over the

lifting strip to yield two vorticity onset flows for each lifting strip. In

general, each onset flow has three cosponents at every control point. Specif-

ic*lly,

f(F) str_p k _(F)
ik = j ij

k = 1, 2, ..., L (2.6.25)

f(S) str_p k f(S)
ik = j ij

where L is the number of lifting strips. The summtioas of Eq. (2.6.25) are

over a co_lete lifting strip incT_ding the wake elemnts. If a lifting sec-
f(F) and _(S)tion begins with an "extra strip" (Section, Z.6.4), both velocities ik ik

for the extra strip are added to the velocity f(F) corresponding to the firstik

ordinary strip of the section. Similarly, if the ;ast strip of a lifting

section is an extra strip, both velocities for the extra strip are added to

the _i) ) of the last ordinary lifting strip of the section. (This gives an

underlying dipole strength on the extra strip that is constant at a value equal

to that attained on the adjacent lifting strip along the common N-line of the

two strips.) Thus, the calculation of Eq. (2.6.25) gives an N x L matrix of

velocities at the control points, where L refers to ordinary lifting strips

only. Since L is small compared to N, these matrices are small compared to the

source-veloc|tymatrices. Each of the velocities, Eq. (2.6.25), represents the

velocity due to an underlying dipo]e distribution of the strip that has slope

unity on one N-line and zero on the other with a linear "spanwise" variation

in between.
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The characteristic onset flow velocities due to a strip are

f(0) _(s) _(F)
ik = Vik + ViE

= ] re(S). _(F)]_) _r_'ik "ik

(2.6.26)

The first velocity of Eq. (2.6.26) is that due to an underlying dipole distri-

bution on the strip that is constant in the "spar_ise" direction. The second

velocity is that due to a dipole distribution that varies linearly in the

"spanwise" direction and has zero value at "midspan." These velocities are

used to form the basic circulatory onset flows f!k).
1

If the "step function" option for boundvorttcity is used, the _opor form of

the dtpole distribution is simply constant in the "spanvlse" direction over

a lifting strip, and the velocity--'_) is precisely the onset flow. Thus, for

tbts option, the vortictty onset flows are

_i(k) = "ik_(O)" k = l, 2, ..., L (2.6.27)

The above ytelds L onset flows, each of which corresponds to a unit value of

the "streiise" dipole derivative B on one lifting strip and zero values of B

on all other lifting strips.

The machinery for the "piecewise linear" option for bound vorticity is somewhat

more complicated. The "spanwise" variation of the "streammeise" dipole deriva-

tive B (bound vorticity) is linear in the "spanwise" direction across a lifting

strip. Thus, the velocity at the i-th point (control point or off-body point)

due to the k-th strip is

_(o)
_i (strip k) = Vik Bk +

where wk is the "spanwise" width of the strip.

w_(]k Ik)Bk (2.6.28)

B' is the "spanwise" deriva-

tire of B, and subscripts k denote quantities associated with the k-th lifting
!

strip. The derivative Vk is evaluated by a parabolic fit through Bk_ l,

Bk and Bk+ i. Specifically, define
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wk Wk + Wk+ I ]
--[Wk+Dk = Wk + I/2tWk_ I + Wk+ I) Wk-1

wk Wk + Wk+1 Wk + Wk. 1 ]

Ek ; Wk + I/Z(Wk_ 1 + Wk+l) [ wk + Wk_l Wk + Wk+l

(2.6.29)

Wk [ Wk + Wk_i l
Fk = Wk + I/2(Wk_ I + Wk+ I} wk + Wk+ I

Then Eq. (2.6.28) is approximated numerlcally by

tk -k

(2.6.30)

The velocity Eq. (2.6.30) contains values of the -strmwise" dipole derivative

B for three consecutive strips. However, a proper circulation omset flov is

propor':ional to the value of B on a s|mjle strip. Since each Bk enters

_i (strip k) for three consecutive strips, its three contrfl_Atons my be

summed to give the basic vorticity onset flov.

= "ik "t,k-l'k-1 i,k.lDk+ 1 (2.6.31)

In performin9 the above parabolic fit Eq. (2.6.30_, the values of the function

B to be fit are, of course, the values of bound vorticity on the strips. Each

of these has been associated with an abscissa or mindependent variable" that

expresses the spanwise position of each strip. Differ-nces of these abscissas

appear as combinations of the widths wk. Calculation of the wk is not

obvious, because in general the "span" or width of each strip is not constant

but varies in the -chordwise" direction. An average width is calculated for

each strip and used in the calculation above.

The calculational machinery of the program insures that the underlying dipole

strength varies linearly in arc length along an N-line, i.e. that dipole

strength equals B&, where B ts a constant to be determined an_ L is arc

len_ch measured from the lover surface trailtn9 edge. In particular, at the

upper surface trailing edge, the dipole strength is BL (total). This is the

circulation about the N-line and the value of vortictty that carries into the

wake. The mchinery above fits the spanwise distribution of dipole derivative

|



B, but it makes better sense physically to fit the circulation distribution BL

(total). This is a smcother function because it is independent of planform

breaks.

The code has the option of fitting either B or BL (total). While the above

concept is somewhat complicated to explain, its numerical implementation is

simplicity itself. All that is necessary is to divide the vorticity onset

flows associated with each N-line by the corresponding values of L (total).

Them. the values of "B" that are solved for will really be values of BL (total).

Thus in Eq. (Z.6.26)

_(F)
ik replaces ((F)

LFltOtal _ ik

f(s)
ik replaces _(S)

Ls(total _ "tk

No other changes are necessary.

(Z.6.32)

_ese are added to produce a single dipole

onset flovper strip and a comq)lete flow solutton obtained for it.

2.7 The Kutta Condition

The Kutta condition is applied as a condition of pressure equality on the upper

and lower surfaces of the trailing edge, which amounts to a condition of equal

velocity magnitude. As a numerical approximation, the Kutta condition may be

applied by equating pressures at the control points of the two panels adjacent

to the trailing edge on the upper and lower surfaces of the wing. Alterna-

tively, velocities at the upper surface control points of the few panels near-

est the trailing edge can be extrapolated to obtain velocity continents "at"

the trailing-edge upper surface, and the same could be done for the lower

surface. This last allows application of the Kutta condition more nearly at

the trailing edge, and the analogy of this procedure yields considerable

i_rovem_nt in accuracy in two-dimensional cases. This is the option used in

the present method.
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However the point of application of the Kutta condition is chosen, the logic

of the calculation is the same. In particular, a velocity vector can be caTc-

ulated at the upper and at the lower trailing-edge point for each strip of

panels (Fig. 1). From the discussion of Sections 2.5 and 2.6.5 it is clear

that the velocity vector at the i-th control point is given by

. fiJ°J L f!_)Bk+ f
j-1 k=1

(2.7.1)

where f_o is the onset flou (usually a unJfora stream). Initially, the _j and

Bk are unknovm, but it can be seen that fi depends on thee linearly. If
velocities are extrapolated to the tratlin9 edge, thts linear dependence

remains. Let supe_cripts U and L denote velocities at the upper and lover

tratl|ng edge, respectively. Fvrt_lwr let svbscrtpt u = 1, 2, ..., L denote

condtt_s on me u-th ;tmng strtp of panels. Thus_U) end_L) are

the veloctty vectors at the upper and lover tratllng edge, reslMucttvelY, of the

m-th 11fttng strtp. The condition that these two veloctty vecte_ have eqB1

mgnltudes my be vrttten In term of dot products as

Applying Eq. (2.7.2) at the trailtng edge of each ltfttng strip ytelds L quad-

ratic equations in the (N + L) unknmms oj and 8k.

2.8 Iterative 14atrix Solution

The velocity induced at the t-th control point by the source and vortex

singularities ts given tn Eq. (2.7.1). Taking the scalar products of these

velocity vectors with the unit nomal vector _t of each contrel point gives

an N x Nmtrlx of source influence coefficients and an N x Lmtrlx of vortex

influence coefficients defining the nomal-veloctty Influence of each elament-

ary singularity distribution at every control point. If we define the solutton

vector X v hose entries are the source strengths oj, (j = 1, N) follovedby

the vortex strengths Bk, (k :* 1, L), the condition of zero nomal velocity

on the bodycan be wrJtten in the form
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AX=R (2.8.1)

where A is the N x (t_L) matrix of source and vortex normal velocity influence

coefficients, and the right side in Eq. (2.8.1) is the negative of the normal

component of the freestream velocity. It is important to note that A is purely

geometric and does not depend on the onset flow, which enters only the right

side.

Equation (2.8.1) defines a system of N linear equations in the (N+L) unknown

singularity strengths. A further set of L equations therefore are required to

complete the formulation of the problem. These equations are provided by the

Kutta condition, whos_ derivation is outlined in the previous section. This

condition eBsures that the computed upper and lower surface pressures match at

Uke tratlt_J edge. The resultteg equation, (2.7,Z), can be wrttten tn the form

(e(,) _ t,, =o (2.8.2)

where f(U) and _(L) are the upper and Iower surface traiIi_j edge velecities

_tle _av is the average of these two velocities.

One Kutta condition is applied far each lifttmJ strip, giving a set of !1 linear

and L nonlinear equations to be solved for the I_L unknowns. For complex con-

figurations, N can be large, up to 2000 in the current version of the code,

while L is typically between one and two orders of magnitude less.

The computing time required for the solution of the linear equations by a

direct solution is proportional to N3, while that required for an iterative

matrix solution is proportional to N2 per iteration. Therefore, provide_

that the number of iterations required to obtain a converged solutions is reI-

ativelysmall (compared with the nmmber of unknowns), there is a large benefit

to be obtained through the use of an iterativematrix solution. The scheme

adopted here is an accelerated block Gauss-Siedel iterative procedure which has

been shown to give raptdly convergent solutions for a wtde range of geometries

(Ref. 8). This section wt11 outltne the details of this |terattve scheme, and

Appendix H will present the detatls of the acceleration scheme _hich has been
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adopted in order to improve the speed and the stability of the convergence

procedure.

As pointed out above, the Kutta condition to be applied is nonlinear, and so

it nmst be linearized in some manner consistent with the iterative solution

procedure which is to be applied. If we introduce the subscript K to denote

quantities evaluated after the K-th iteration, Eq. (2.8.2) can be written as

(_(U) _ _(L))K . (_av)K_l = 0 (2.8.3)

so that the average velocity from the previous iteration is used. For the

first iteration, fay is replaced by a vector along the local trailing-edge

bisector, v_ich ensures that the physically meaningful root to the Kutta con-

dition is selected in which both the upper and lover surface velocities leave

the body at the tn_Jltng edge.

2.8.1 Block Giuss-Stedel Iterattve Scheie

It was shovm by Hess (Ref. g) that the Gauss-Stedel iteratJve matrix solution

scheme converges very rapidly for simple extem11 flov problem. This

approach, vhtch ts described by Varga (Ref. 10), reltes on solvtng a succes-

sion of lower triangular matrix equations of the form

A_XK = R - AuXK_1
(2.8.4)

where XK is the K-th approximation to the solution. The matrix AL represents

the diagonal and lower triangular part of A, while Au represents the upper

triangular part.

For lifting flovproblem there ,s a strong couplingbetveen the source and

dipole strengths for a given lifting strip. Therefore, in order to maintain

the diagonal dominance of the matrix, it is necessary to adopt a block Gauss-

Siedel scheme. The particular approach used here takes the source strengths and

the associated dipole strength for each lifting strip as separate blocks in the

solution vector. In this way the norm1 veloctty conditions for a given ltft-

ing strip are satisfied stmltaneously along with the Kutta condition before

3495H 28



proceeding with the solution for the next block. This is not the only way in

which the block structure could be implemented. Reference 11, for instance,

groups all of the dipole unknowns together as a single block in the matrix.

However, for the nonlinear Kutta condition, the approach adopted here is morP

convenient. For nonlifting sections of a configuration, the choice of the

block structure is less crucial. As the block size for _uch panels is

increased, the computational effort is increased but the rate of convergence

is also increased. The 'mse of a block size of 50 has been found to give a good

compromise.

This iterative scheme is equivalent to solving a series of quasi-two-

dimensional problems corresponding to each block in the matrix. The onset

flow for each of these calculations includes the current effects of all the

other panels on the body. Therefore, as the solutton converges, a fully

consistentthree-dfmL_stoml solutton is obtained.

The iterattve solution procedure can be broken dmm into two steps, the first

of v4tich involves the calculation oft he right-hand side of Eq. (2.8.4) based

on the prevtous solution,

RHSK_1 = R - AuXK. I

The second step is the calculation of the new approximation

(2.8.5)

AjLXK : RHSK_1 (2.8.6)

Each of these steps is performed successively for each block of unknown source

strengths, each of which involves the direct solution of a small set of simul-

taneous equations. In addition, for |ifting strips, the dipole strength is

computed by satisfying the Kutta condition for that particular strip.

At this stage, _t should be pointed out that, for large matrix equations, the

whole coefficient _atrtx A cannot be stored in the computer memory at one time.

The order in whtch the matrix is formed and stored on discwill therefore
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influence the way in which the matrix solution scheme is foruulated. In gen-

eral, the Gauss-Siedel iteration scheme is more naturally suited to a matrix

which is stored by rows. However, when forw_lated, as outlined in Eqs. (2.8.5)

and (2.8.6), the scheme can be applied to matrices stored either by toys or by

colums. The matrix multiplication operations involved in both Eqs. (2.8.5)

and (2.8.6) can be accomplished for either row or colum stored matrices. The

only difference arises from the order in which the multiplication loops are

nested.

2.8.2 Convergence Acceleration Scheme

The revious section describes the iaplemntation of the block Gauss-Siedel
P ...... ,- - +w-,_-dt_stonal panel method calculation. For many

- - v---rm|dly and slgnltlCalt_ 5avmn'H;)
procedure converg_ _ ; -r " -'_ a direct mtrtx solu-
be achieved for large iNmel nvlers by coegewlson w_n ....

tton. Hoverer, for gore complicated coaftgurattoms, such as three-dllmSlO_m

scheme becomes verse, a,d tn some cases it can _,, _ -,-_._ ..... lation

of the soluttonmaking use of the as3_q_totlc COmmrge-_ -o

gives a _tscusston of several iterative schemes, re_dtng a composite ._

relaxation to d_ out any oscillations tn the convergence nlstorY. _ ,

for coaq)lex configurations, different _ections of the matrix wt11, in general,

converge at different rates _hich mkes the use of global convergence factors

unsuitable. A hey convergence acceleration scheme has therefore been developed

_ich can be applied after each iteration without the need to establish as3n_P-

totic convergence rates. This scheme has been found to give improved converg °

ence in all the cases consideredvdhile also e_abling converged solutions to be

obtained for cases which are_e11 outside the normal range of convergence of

the basic Gauss-Siedel iterattve scheme.
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The scheme adopted is a relaxation method inwhtch, after each iteration, an

improved solutton is defined as a linear combination of the earlier approxima-

tions. However, the relaxation coefficients are computed after each iteration

in such a way that the residual error of the new approximation is minimized.

To implement the scheme described in the previous paragraph, it is necessary

to define the residual vector after each iteration. For the linear normal

velocity equations, this residual is defined by

RESK = R - AXK
(2.8.7)

It is clearly undesirable to have to evaluate this expression after each iter-

ation since this would involve (H 2) operations which is equivalent to an

addltional iteration. However, by separating the matrix A into its triangular

parts, and applytngEqs. (2.8.5) and (2.8.6), the restdual vector is gtven by

nsK- ,msK- .rex_i (2.8.8)

and this expression can be easily evaluated at the end of each iteration. _he

residual for the Kutta conditions can be evaluated by computing the trailing-

edge velocities after each iteration. Substitution in Eq. (2.8.3) then gives a

value for the Kutta residual for each unknov_ dipole strength.

Apart frost he calculation of the residual vector, defined by Eq. (2.8.7), the

convergence acceleration scheme presented here does not depend in any way on

the details of the Gauss-Siedel iteration. The schemes are applied as two

independent steps of the overall iterative procedure. In the following outline

we will define RESK to be the residual vector, including both the normal

velocity and the Kutta condition residuals after the K-th iteration correspond-

ing to the solution vector XK, which also includes both the source and the

dipole unknowns.

Given a set of approximations to the solution, Xo, X1, .--, XK, we can

define a new approximatio_ by
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K
x'= Z xifi (2.8.9)

iOZ

where fo' fl' """ fk are th_ acceleration coefficients which are yet to

be determined. In general, the first approximation, Xo, which is the start-

ing solution to the iterat_ve procedure, is taken to be the zero vector.

Therefore, Eq. (2.8.9) defines a set of K independent approximations to the

solution vector, and so it is convenient to constrain the acceleration

coefficients so that

K

i[:0fl = 1 (2.8.10)

It nov follovs from Eq. (2.8.7) that the nevrestdual vector Is given by

K
RES' = _ R_tft (2.8.11)

t ;0

It slmld be noted that, _tle thts eqmtt_ Is eact for the ,emil velocity

residuals which satisfy a linear equation, it is oely al_roximte for the

nonlinear Kutta residuals. I_, this al_ximtton ts consistent wtth the

linearizatton al_lied in the solutton of the Kutta condition, and it ts a good

approximation for this application.

As the :oeffici_ntsf i vary, [q. (2.8.9) defines a family of approximations

to the solution of both Eqs. (2.8.1) and (2.8.2) for which the corresponding

residual is given by Eq. (2.8.11). In order to minimize the error for this new

solution, a single scalar measure of the error is required. The sum of the

squares of the components of the restdual vector provides a suitable error

measure. In matrix notation thts quantity can be evaluated tn terms of the

no_ofth_restdual vector uhtch tsdeftned by

I IP-ES'I I2. [ RES' ]TREs' (2.8.12)

where [RES'] T is the mtrtx transpose of RES'.
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This equation defines a quadratic function of each of the variables fi"

Since this function is non-negative, it follous that its minimum value ,mst

occur at the point at which

allRES'llglafi = 0 for i = O, I, ..., K-I (2.8.13)

This provides a set of K linear equations which, together with Eq. (2.8.10),

can be used to determine the acceleration coefficients completely.

Full details of the derivation of this set of equations and their solution are

given in Appendix M.

This acceleration scheme Involves two principal computational tasks. The first

is the caIcuIation of the acceleration coefficients, which in turn involves the

calculation of the scalar products belLveen every patr of residual vectors. 1he

seco_l is the application of these coefficients to the calculation of an

improved solutton and its corresponding residual vector. 8oth of these tasks

will involve on the order of (lal) operations whtle each iteration requires N2

operations. Therefm'e, since K, the number of previous solutions, i: very

much less than fl, the additional computation introduced by the acceleration

scheme is smell. However, it has been found to have a significant effect on

the rate of convergence of the scheme, while also giving an improved stability

enabling converged solutions to be obtained for cases which are we11 outside

the normal range of convergence of the basic Gauss-Siedel iterative scheme.
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3.0 THE INLET PROCEDURE

3. I General DescripticF,

The inTet procedure employs the above-described panel method to calculate

fundamental flow solutions for the inlet which are then linearly combined to

obtain the flow at any desired operating condition. Specifically, solutions

may be obtained for any angle of attack or yaw, Hach number, and mass flow

rate. The computational effort required to perform the combination for a par-

ticular operating condition is a small fraction of that required for the init-

ial calculation of the fundamental solutions. Thus, solutions for any number

of operating conditions may be obtained inexpensively, as needed, at any time
after the fundamental solutions have been calculated.

The numerical efficiency of this inlet procedure is realized because the funda-

mental solutions are obtained for incompressible flow, and then combined and

corrected for coqw_sibtl|ty effects. A key element in thts aRproech is an

acorate and gmeral cmqx_ssJbt|ity c_ton that my be alppTied to the

J_XllWesstble flw about the same tnlet, as opposed to the staMard Goetbert

procedm_ MHch requtres a Ihch-mi_r-4elmdmt stretched versiem of the

inlet. The coupress|btltt¥ co.notion used ts the Lfeblefn and Stockman

method, Ref. 13, which is described in Appendix N. Thls procedure has been

well verified by comparison wtth experimntal data, Refs. 13-15. For internal

flows it is effective even for supersonic flow wfthout shocks, and it has been

generalized to external flow about wings, Ref. 16.

From the begfnning (Ref. 1) thts work has had _o principal ai_s: computa-

tional efficiency for arbitrary geometries, whtch is discussed above, and user

orientation, which has bee, obtained principally by including a number of

graphical output features. The main capabilities of the programs of Refs. 1

and 2 are surface streamline tracing and isoplotttng of various flow quantities

both on the surface and over cross sections. Both of these have been iaproved

by providing the capability of drawing curves across section boundaries. That

is, the panels Bay be grouped into logically independent but physically contig-

uous sections or networks, and the plotting routine can draw streamlines or
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isocurves across these boundaries. A major new graphical feature is the por-

trayal of the surface or off-body velocity field by means of e set of vectors

having the velocity magnitude and direction at all points. This type of

picture has proven very useful in applications.

3.2 The Fundamental Flow Solutions

First, the definition of a flow solution must be described. In the present

context these are incompressible flows. Every flow solution corresponds to a

certain "onset flow" which is the flow incident to the body. In general the

onset flow satisfies neither the ,ormal-velocity boundary conditions nor the

Kutta conditions. The source densities aj and the dipole derivatives Bk

(bound vorttcity strengths) are adjusted to satisfy these conditions. Themst

coamn onset flow is a unifomstream, but as will be seen, other onset flows

are also necessary. For this reason, the onset flow vector at the panel con-

trol points is written foi to show that it may vary from potnt to point. Then

the veloctty at the t-th control point is

j=1 joj + k=1 i

(3.2.1)

This replaces Eq. (Z.7.1), and themthod of Section 2.7 and Section 2.8 give

the values of aj and Bk corresponding to that particular onset flow.
When these values are inserted into Eq. (3.Z.1) and the indicated summations

performed, the resulting _t of fi is designated a flow solution.

The set of fundamental flow solutions that are superposed by the combination

program to obtain flow about the inlet at arbitrarily prescribed operating

conditions may be described most easily in terms of two types of flow. The

first is flow about the inlet due to a unit frees_ream at prescribed angle of

attack and yaw with no effort to control mass flow through the inlet. In the

nonliftingmethods of Refs. 1 and 2, there were always three such flows: zero

angle of attack and yaw, 90 ° angle of attack, and 90° angle of yaw. In lifting

cases, however, the latter two flows make no sense. If the inlet has a

leading-edge slat, for some circumferential locations, the trailing edge is

the upstream point of the airfoil section. The result can be nonconvergence
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of the iterative solution. In the present program a number of angle-of-attack/

yaw combinations are input by the user. It Is preferable to choose these com-

binations in the range where the user's interest ultimately wil1 lte. The

other type of solution is the static, for which the tnlet ingests fluid and the

flow is quiescent at infinity. The inlet methods of Refs. 1 and 2 use differ-

ent mathematical devices to produce the static solution. Reference 1 uses a

constant vorticity distribution over the inlet surface, as illustrated in Fig.

7a. This has some features in common with the surface vorticity used on the

slats to generate lift, but is also has several differences. No Kutta condi-

tion is applied on the inlet, and no distrtbutio'_ of vorttcity is solved for.

Instead a single parameter, total vorttcity strength, is adjusted to satisfy a

single condition, mass flow through the inlet. If auxiliary tnlets are pres-

ent, the topology of the configuration does not permit use of surface vortic-

ity. Accordingly, tn the method of R_f. 2, the mechanism of the static selu-

tton is a stngle ring vortex located yell dommtrem tn the tnlet, as shevn tn

Fig. 7b. The strip vorttctty optton of Ftg. 7a gives a superior static solu-

tion, and it is used tn a11 cases except for the Infrequently occurring one

where an auxiliary tnlet ts present. In the very infrequent case vhere there

are two independent ross flov rates, e.g. an "tnlet vtthin an inlet," the above

mechanism have to be applied to each tnlet separately.

Because of the wide variety of cases to whtch the present method may be

applied, some flexibility is necessary in the choice of fundamental flow solu-

tions. For exa_Te, while the static solution has a sensible Kutta condition

for an inlet with leading-edge slat, the same probably cannot be said for an

inlet on a wing, where the static flow near the wing trailing edge is more-or-

less parallel to it. Similarly, the high inclination angles at which

inlet can operate at high n_ss flow rates lead _o the above-described

culty for 90 ° if no mass flow control is exercised. Thus, in general the

fundamental flow solutions should all contain coubtnations of an inclined

freestream and a static condition. This is perfectly permissible as long as

the flow solutions contain all the independent possibilities, e.g. at least

two angles of attack, yaw, and mass flow rate.

a slatted

diffi-
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3.3 The Combination Progrm

The fundamental flow solutions and the body geometry are accessed by the com-

bination program. At this stage also are input any off-body points and inlet

cross-sections where the flow output is desired. A cross section is a panel

network extending across the interior of the inlet. Flow quantities are com-

puted at panel centers and a total mass flux for the cross section as a whole

is evaluated. One cross section is designated the control station, and it is

there that the mass flow condition is applied. In preparation for this, the

average velocity at the control station V is computed for each fundamental

solution.

The flow condition input to the colbination program consists of flow conditions

at infinity and at the control station. The vartous possibilities are pre-

sented in l_opendix O. The key quantity in the c_b|nation ts the equ|val,eot

ieCelpressible velocity, which Is denoted with a prime. In parttcula, r, V ts

the equ|valent tncolpresstble freestream veloc|ty (Eq. (0.13)) and Yc is the

equivalent tncompress|ble average veloctty at the c:ootrol station (Eq. (0.20)).

Tn all cases V' equals Y multiplied by the local static-to-total denslty rotio,

and the flow direction is unchanged.

In order to ce_ute the combined flow for a given set of flow conditions, a

number of the fundamental flows are coE_ined linearly. In general, three fin-

early independent fundamental flows are required to satisfy the conditions at

infinity while an additional static solution solution is required for each

independent mass-flow condition. However, for flows without yaw, the number

of fundamental flow_ required is reduced by one. In the fundamental solution

mode, a number of user-specified fundamental solutions are obtained including

at least one yaw solution if combined solutions with yaw will be required. The

range of angles of attack and yaw specified should preferably span the complete

range of combined solutions which will be required. When the combination pro-

gram is run, the code will automatically select the closest linearly independ-

ent solutions to be used for the coaJ)ination. This procedure is required by

the nonlinearity in the potential flow solution which is introduced by the

Kutta condition.

L
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5

To Illustrate the combination procedure, consider the case In which four

fundimlenta] solutions have been selected by the code. Let these Individual

solutions be denoted by the superscript m, and let am represent the unknown

combination constants. The equivalent inComl)resstble veloc|ty for the combined

flow is

(3.3.1)

where the combination constants am are Initially unknxwn. Meeting the pre-

scribed flow conditions at infinity and at the control statio, requires

4

mI

(3.3.2)

Th|sdeftnesfourequattoms (one vector, one scalar) for the fouru_knmmam.

Once caaputed the7 are inserted tn Eq. (3.3.1) to obtain if" vhfch is ,sed

in _ cowresstbtlity_tom (#4q_Kltx R).

t
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4.0 CALCULATED RESULTS

Thelthod described here will be illustrated ustng three separate geometrical

configurations, The first two cases represent complex three-dimensional flows

involving inlets with lifting slats on the leading edge of the cow]. The third

configuration is a simple nonlifting axisymmetric inlet which illustrates some

improvement in the computed results, as compared with the non|ifting method

presented in Ref. 2.

The first geometry discussed is an axisymetrlc inlet with a centerbody and

leading-edge slat shown in Fig. 9. The cross-section shown In Fig. 9b illus-

trates the relationship of the leading-edge slat to the cowl. The ability of

colored shaded graphics to portray coqplex three-dimensional bodies is illus-

trated in Figs. 9c and 9d. Figure lO shows a comparison of the current method

with the axls_metrtc method of Ref. 18 for a cmblMxl flw alom_j the axts of

tke inlet with an average velocity on the fall face, x I 2._)3, Of _ric_ the

freestrem. A surface vorttcity dtstrtbetton on the cowl ms _ to generate

the stettc soluttm in both the axls_mmtric aM the three-d'hmtslo_l calcu-

lations. The pressmre dtstrtlwttons on the covl and the centerbody, slmm in

Fig. I(M, agree very closely vhtle Fig. lOb shevs that on the slat there is a

small difference tn the leeding-edge pressure peak when compared with the

axls_metrtc result.

The remtning results For this configuration are presented for three incompres-

sible flow conditions. The first is a pure static flow wtth no flow at infin-

ity, and the second is a "pure freestrem" solution at zero angles of attack

and yaw, with no surt ace vortictty on the cowl. The third solution is a com-

bined flow at 40 ° angle of attack, zero yaw and an average fan face velocity

twice the freestream velocity. Figures l|-13 illustrate the flowfteld across

the inlet for these three flow conditions, the vectors dra_n being proportional

to the local flow velocity. The flowfield velocity vectors are computed tn the

plane through the inlet axis ttlted 15° from the center plane of the inlet.

The boundary ltnes shorn on these figures represent the boundaries of the off-

body flowfteTd rakes used to compute the fl(nffteld rather than the exact

aerodynamic surfaces. For clarity, the approximate body locations are shaded.
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The static case shown in Ftg. 11 Illustrates the raptd decrease tn veloctty

magnitude ahead of the tnlet, whtle the expanded vtev of the slat regto_

reveals a local f]ow environment stmtlar to that of a conventional flap wtth

the upstream stagnation point occurring in the vtcintty of the slat leading

edge. The axisymmetric freestream condition shown in Fig. 12 gives a more

unconventional f]owfield. In this case the "upstream" attachment line on the

slat occurs on the forward-facing surface of the slat c]oser to the trai]ing

edge than the leading edge, whi]e the attachment line on the cowl occurs vir-

tually under the leading edge of the slat. Figure 13 illustrates a combined

flow in which the freestrem is at 40 ° to the tnlet axts whtle the internal

velocity ts tvdce the freestream. In this case the flow ahead of the inlet and

on the centarbody Is very dtfforent than that shown In Fig. 12. Hovever, tn

the vicinity of the slat, the floufteld ts qualitatively the same.

present the cemputed flovfteld ts_bars for the same three flou

Figures 14-, the sane off-burly plue. Ftgure 14 _.a_a,n slums the _t_emlconditions tn

nature of the slat floufteld tn the stattc case vttk the raptd pres---_'_ wr]

tton occvrrtng as the flov goes around the tnner 1tp of the owl. On tim

other hand, Ftgs. 15 and 16 shev the extreme pressure gredtents occurring oa

the slat vhere the flov turns around the leading edge.

but further complicated by the adklltlon of another lead ng.-e slat, thts tinm

only a part-circwufe_e slat, however. A sectton thrOUgh T lover half of

the configurat|on is shown in Fig. 17. Results are presented for this config-

uration at a combined solution of zero yaw, 40 ° angle of attack and fan face

velocity of twice freestream.

compares the computed pressure distribution, plotted against radial

Figure 18 on the rain slat at three different circumforentlal lecations_hth edistance,

the corresponding results computed for the stngle slat configuration.

top of the tnlet the presence of the auxiliary slat does not have.a l trge_ t
Hovever, tn the z = 0 plane there is a SlgnlTlq;al,effect on the pressure.

reduction tn the leading-edge pressure peak, vhtle close to the bottom of the

inlet the second slat greatly reduces both the lead|ng and tra|l|ng edge
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pressure peaks on the main slat. Figure 19 shows the surface velocity distri-

bution on both the tnner and outer cwl surfaces for the same flow conditions.

It can be seen frm Fig. 191) that the nonaxtal nature of the flow persists

throughout even the interior of the inlet. This is presumably due to the

presence of the ingested tip vortices trailing frol each end of the part-

circumferential slat which will induce some swirl into the internal flow.

The third configuration considered is a siq)le 72-panel (on th: "half-body')

round inlet, as shown in Fig. 20. This simple geometry was used to demonstrate

the in_rovement gained in the new source derivative fitting algorithm in use

in the present code. Figures 21a and b present the variation in peak Cp versus

theta (measured circWerentlally), and the variation in Cp versus axial dis-

tance at a fixed theta value (o -- 75°), respectively. The results are con-

pared with those obtained by the method described in Ref. 2 in which a "least-

square" fitting procedure was used to compute the source derivative effects.

The present approach, described in Section 2.5.1, demonstrates the improved

level of axtsy_etry vkich is obtained by the new formlatton.
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5.0 INPUT INSTRUCTIONS FOR THE HIGHER-ORDER POTENTIAL FLOM PROGRJIM(DF]2)

5.1 Introduction to the S_stem

The computer code is actually a collect|on of pre- and post-i_ocessing programs

grouped around the potential-flow program. It can be thought of as a system

of program designed to "talk" to each other via saved datasets. These pro-

grams are:

1. PRE-PROCESSOR: parametric cubics patch fitting of 3-D coordinate data.

2. FUNDmENTAL POTENTIAL FLOW SOLVER: (DF12: Mode 1).

3. C011BIIIATI011 OF FtlIDNIEKIML FLOES (DF12: Mode 2).

4. POST-MtOC_SOR: ISOPLOT - plots tso-_n---tow_ (o_ or off-bod_).

S. POST_: V_PLOT - plots velocity vocto. (o,- or off-k#).

6. POST-PROCESSOR: _-ON - calculetes streamlines (e_ly only).

Operation of these codes is facilitated by a set of interactive "submit CLISTS"

and associated FORTRAN program, k single CLISTcontrols the operation of

programs 1, 2 and 3; separate CLISTS exist for each of programs 4, S and 6.

Mhile all these CLISTS have been des|gned for an IBM mainframe runntng TS0 in

an HVS/XA environment, similar Interactive subldttal procedures can easily be

ver_tten for other systems to accomplish the same purpose, v|z. simplify the

user's job of running cases and enhance his ability to invest|gate both the

quality and significance of the computed results.

5.2 Discussion of the Individual Program

Since several of the programs can "commtcate" vtth each other via saved data-

sets, a great deal of flextbtl|ty extsts concerning the seqve_e tnwhtch the

program say be executed. For exmple, Program 1 can talk to either Program

2 or 3, but is not always required to run Program 2 or 3. Program 4, Sand 6

can talk to Program 2 or 3, but only if the appropriate dataset from 2 or 3
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was sam. To u_s_ the p_stble InVaSions he_ p_am, tt ts

_st to _1_ e_h one _rately, first.

5.2.1 The PRE-PROCESSOR: PC-PATCH

This program is designed to take a user-defined set of 3-D Cartesian coord-

inates and fit a set of parametric bi-cubic patches to the implied surface.

The input consists of a formatted "card-image" (i.e. 80-column, fixed block)

dataset which contains the corner points of panels distributed on the surface

of the body about which the flow is to be calculated (see Appendix P). The

formt of this data is:

cc 1-10 X
cc 11-20 Y
cc 21-30 Z

Cartesian coordinates

cc 31 I_AT 0 = thts _tnt is on the same _|tne as _1_ _tnt

21 :thts potnt starts a m _1t_thts point starts a m __

cc 32 LJmEL 0 = this Is an IIL]F (nonllftllng) section
1 = thts Is a LZFT (11fttmj) sectkm (t.e. has _tta

condition)
(Note: ali LIFT sections, ff any, must precede all
other sectton types.)

2 = this Is a MARE sectton (all MMQEsections, |f any,

rest come last on the tnl_L ge01e,try)dataset, afterall other __,1,3 and 4 _lons
3 =thts is a DBLT (doublet) section
4 = this is a SRF_ (surface yorticlty) section

(Note: my not use both DBLT and SRFY secttons at
the s_e ttm tn a Rode 1 case.)

5 =thts |s a FLUX section (allowed as input to Hode 2
cases only)

cc 33 HCURV 0 = automatic H-line curvature selection (curved unless
LABEL=I)

I = H-lines are all curved (even Jf LABEL=l)

Note that L_ and RCURVonly apply to XSTAT=2 _ints, i.e. they _d be

entered onlyonceon a section. (For a dJscussJon of the 11mtts on the numbers

of_tnts, _ls, etc., see Section 6.2.4, Program LJ_ts.)

_ese panel coordina_ dab are "fit" wi_ witrtc c_tc _tcm (s_

_tx B) _ witt_ to an outwt dat_et h_aft_ _ed to as a "_U =-

da_set (Par_lc Cubt_ _fomtted). The P_ da_ serves as a tr_

3495H 43



surface definition for the higher-order potenttal-flov solver, but ttts not

required that the pre-processor supplied wtth thts system be used to generate

that PCU-dataset: any "pC"-fittlng progra:amay be used, as long as the follov-

ing PCU-'format" is observed:

Record #1: IFORM

Record #2: NSECT
NPATT
NTYPE(6)

HEAD(9)

A single integer (use "1") specifying the PCU-
format

Number of SECTIONS (see Section 2.3) of data
Total number of patches on the entire dataset
6 integers indicating the number of each type of
SECTION in the following order: #NLIF, #LIFT,
#WAKE, #DBLT, #SRF_, #FLUX
9_ord (4 bytes/word) alphanumeric title

ttSECT sets:

Record #3:

Record t4:

Record _IPS:

e

ISECT
WAT
Nil
m/
HF._(lS)

TflM(12)

P(48)

Running SECTION counter
Xmber of PC-patcMs on this section (,,_ x NV)

limber of patckes In = "li-11ne" direction

1S.v_lo T 141mt_S/vord"N-1 the" dtirectton) alpkmmm_c sectton tttle

lz aowle-p cistm vor (e u'ms-
formttm mtrtx (mot prese_mY useej

48double-Wectstonvord (8 bytes/vord)
PC_l_coefftcten_.s tnGEONETRIC form;
repeated for all IIPATpatchesonthts
SECTION

Recol_ d #(44NPAT)

Note that tbePRE-PROC£SSORprogrmmaybeusedto generate the PCU input data-

set for both the on-body data (used in Hode 1, described below) and the flux-

section data (optionally used tn Hode 2, also described belov). The PCU data-

set created by thts pRE-PROCESSOR ts relatively tnexpensfve to create and ts

therefore nomally discarded by the potential flow solver. This ts true unless

the potential flow solution is being saved for a Hode 2 case; in the latter

situation, the PCUdataset ts copted into the saved fundmental solution data-

set created by Hode 1 to ensure that Mode 2 is operating on a consistent geom-

etry base.

5.2.2 !)1:12, Hode 1: FUNDNIENTAL POTENTIAL FLON SOLVER

This program forms the heart of the system in that the fundamental flows are

generally tbemst coaplex and expensive part of the solutton and fomthe
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basis from which any combined solutions are obtained. 1he tnput to this pro-

gram consists of a PCU-dataset (described above, in Section 5.2.1 ) on unit 1,

and a formatted card-tmge dataset which contatns some simple control flags on

unit 5. The format of the control flags dataset is:

Record #1:

cc 1-72 TITLE(I), I=1,18 Alphanumeric run description

cc 73 HODE

Rew..inin _ records (as needed)

AREF Reference area

A single integer indicating the mode (1)

in NAMELIST/Z/ format:

(use semi-area if NSYM=I) (default: l.O)

BOV2 Reference semispan (default: 1.0)

CREF Reference chord length (default: 1.0)

ORIGIN(3) Noment reference center (X,Y, and Z; default: 0.,0.,0.)

IAVTOW
= user-input wake- aut_mttc tratllng-edgebtsectors

2 = avtomttc parallel to x-axts
(default: 1)

ICOmO O = do net save data for a posstble Node 2 cemktaatfen case
1 -yes, sl_ dabt
(default: O)

IDEBUG 0 =prtnt standard set of input flags
I = print set of input flags (for debugging purposes)
(default: _l panded

IFUM)P 0 = no fundamental solutton printout
1 = mtntmmzfundamental solutton printout
2 = full fundamental solutton printout
(default: 2)

IPCV 0 = constant chordwise vortictty distribution
1 = parabolic chordwtse vorttcity distribution
(default: 0)

IPR132 0 = small print size (164 columns, 89 lines per page)
1 = large print size (132 colums, 60 1tries per page)
(default: O)

IPV 0 = do not save P/V (pressure/velocity) dataset
1 = save P/V dataset for posstble use by ISOPLOT, VECPLOT

and/or TRACE-ON
(default: O)

IQWIK

349511

0 = do not save "QMIKPLOT'-type output dataset
1 = save "(NIKPLOT" dataset (see below)
(default: O)
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QI/TKPLOToutput dataset is stmilar to a P/V dataset in that the data is com-

pacted into unformatted (binary) form. ISOPLOT, VECPLOT, and TRACE-ON aT l

require a P/V dataset to execute; the QWIKPLOT dataset is organized around the

concept of "strings" of data, where every record was created in the form:

WRITE(IUNIT)VNAHE,N,(Q{I),I=I,N), where VNAHE is a double precision alphanu-

meric string identifier (8 bytes) and Q(1) is the string of data. An inhou;e

plotting program (called, not surprisingly, "_IKPLOT") was written to read

QWIKPLOT datasets allowing rapid and easy comparisons of results of many CFD

codes, and/or test data.

lO

NSYH

ALPHA

BETA

IEXTRA

0 = higher-order solution
1 lower-order simulation
(default: O)

0 -- no symmetry
1 = symmmetric about Y=O plane
(default: 1 )

Freestream angle-of-attack, degrees (no default; my have up
to 20 values)

Freestream angle-of-yam (defamlt: O; must have a value for
each ALPHA volue sFectfted)
(Warning: Cannot use nonzero BETA tf NSYMmi. )

Strip _numbers of "extra-strips" (see Section 2.6.4), if any;
these com_ consecutive strips of LIFT sections only, which,
as mentioned earlter, if present, must be the first sections
of the input geometry dataset.

The 72-panel, stmple round tnlet half-body, drawn with its image tn Fig. 20,

is supplied along wtth the program source code as a check case. The coordi-

nates for this case are shown in Fig. 22. A sample execution of the inter-

active submit program for a Mode 1 execution of thts check case is shown in

Fig. 23. If the submit program is not used, an input dataset of the form

shmm in Fig. 24(a) must be created by the user. The JCL produced by the

submit program to execute this Mode 1 check case is shown in Fig. 24(b).

The output from the MODE 1 execution of this test case is shown in Fig. 25.

it is basically self-explanatory wtth the following exceptions:

P,Q,R

SIGMA

the curvature quantities as used In the parabelotdal panel
definition: _ = p_2 + 2O_n + Rn2

the source density value at the control point of the panel
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VN
the net normal velocity on a panel

VT the total velocity magnitude: VT = + V_ + V_

CP the pressure coefficient:

INCOHPRESSIBLE: Cp = 1 - (VT/Vref)2

COMPRESSIBLE: Cp (P - Pref)/qref

CL

CD

CSF

CPITCH

CROLL

CYAW

wihere

the "lift coefficient,: L/qAre f

the "drag coefficlent': D/qAre f

the "sideforce coefficient': Fv/qAref
(Note: Fy is the force "in the ¥-direC-tion)

the "pitching moment coefficient-: My/qArefCref

the "rolling moment coefficient-: Mx/qArefbref

the "yawing moment coefficient-: Hz/qMrefbre f

bref

Cref

q

LandD

Fx •

ETA

ASTRIP

SECTCL,
SECTCD

CIRCULTN

the user-|npmt reference area (which should be the "ha]f-
irm" if RSt_-I)

the user-fnput refermce span (vhich should be the semtspmn ifnstlt=l )

the user-inlmt reference chord le_jth

the dJmamtc pressure, p¥_ef/2

measured in the Tift and drag direction

the forces and moments (integrated over the
only, i.e. not over image panels created if
and about the Cartesian axes.

___ pamels,
1) along

YAle f, where y is taken as that of the first control point
on the strip

projected (into the X-Y plane) planf_ area of a ltfttng strip

local strip values of L/qAstrt p and D/qAstrt p

the computed circulation value of the lifting strip used to
satisfy the Kutta condition.

_T
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5.2.3 DF12,Mode 2: COHBIli^TTr)N OF FUNDAMENTALFLOWS

This program permtts the user to combine the fundamental flows (from a MODE 1

execution) to obtain desired mass flow values (typically within an inlet). The

combination constants required to obtain the user-defined mass flow values are

obtained automatically by the program when the user supplies a "FLUX" section

at the place where the mass flow rates are specified. The cost of generating

the automatic combination constants varies linearly with the number of panels

the user has on his FLUX-section dataset, and therefore may equal or even

exceed the cost of the Mode I solution, although this is typically not the

case. Optionally, the user may simply input these combination constants

himself, and thus define his own combination case (perhaps using combination

constants obtained from an earlier Mode 2 run).

Since the fundamental flow solver was designed to handle geometries which con-

tatn ltfttng leading-edge devices, such as those shown in Figs. 9 and 17, the

program logtc which satisfies the r_tta coedtttou made it necessary to bee the

freestrem fmwImaemt_l flows tnclmle some _tom effect_ as pRrt of the stand-

ard set of freestrem onset fmdamontaI flows. As a result, in order for the

user to obtain _ freestrelm onset flows (i.e. without my suction effects ),

a CC = -1 J) my be used. Note also that up to 5 suction fundamental flows my

be generated in a Rode I case, requiring, therefore, an equal number of flux-

setting and/or CC-values to be specified in Rode 2. Furthermore, the number

of flux-setting conditions specified may not exceed the number of FLUX sections

that are input, although the number of FLU_ sections my indeed exceed the

number of suction solutions available fromMode 1; this latter case is the

typical one wherein a number of additional FLUX sections are included in order

to usr VECPLOT and/or ISOPLOT to survey the off-body flo_ield.

Since the c_essibilitycorrection employed by the present program is the

Lieblein-St_man correction which is an "after-the-fa_" type of correction

(unlike, say, the more comon _oethert correction which solves a different

pmtentlal-flow problem for each freestreamMoch number), multiple Mach number

results may be obtained from a single Mode 1 set of fundamental solutions.

Input for Mode 2 consists of the saved fundamental solution dataset fro_ a

Hode 1 case (created whe_ ICOMB0=I), plus a PCU-dataset containing FLUX sec-

tions (if any), plus a card-image flags dataset, which differs according to
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whether COflPRS-Oor 1. Constder ftrst an Incompressible Hode2 case (i.e.

COMPRS_):

Record #I :

cc 1-72: TITLE(I), I=1, 18

cc 73: MODE

Alphanumeric run description

A single integer indicating the mode (2)
(no default)

Reminin9 records (as needed) in NANELIST/Y/ format:

COMPRS
: incompressible flow

comressible flow (Lieblein-Stockmn correction)
(default = O)

IOFF 0 = no off-bodypotnts
1 :off-body points input on a separate dataset X,Y,Z 3F10.

(Do not confuse thts vtth FLUX sections which are M x N
grids of potnts vhlch produce (K-l) x (N-l) panels;
off-body points need have no organization into M x N
grids).

(default : O)

IPR132 0 : sm11 print size (164 colums, 89 lines per page)
1 : large print stze (132 colums, 60 1tnes per page)
(default : O)

IPV 0 = do not save on-body P/V dataset
1 = save on-body P/V dataset for optional

ISOPLOT, VECPLOT, and/or TRACE-ON
(default : O)

later use by

JPV 0 : do not save FLUX-section P/V dataset
] = save FLUX-section P/V dataset for optional later use by

ISOPLOT, VECPLOT, and/or TRACE-ON
(default = O)

IQWIK

NCOMB

0 = do not save "l_llKPLOl'-type output dataset
1 = save "(N!KPLOT'-Lype output dataset
(default =0)

(For explanation of format, see Section 5.2.2 on "IQWIK'.)

Number of combination cases to be calculated NCOHBvalues of
ALPHAC, BETAC, ¥INF, VREF, etc. must be specified.
(_<20; default: 1)
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ALPHAC,
to be

BETAC

VINF

VREF

VC(ICOMB,I)

CC(ICONB, I)

Requested net "combined" angles of attack and yaw (in degrees)

achieved.
(Note: The program automtically selects appropriate combina-
tions of the available fundamental flows; however, the user
cannot request "impossible" combinations, e.g. if all funda-
mental flows were run with BETA=O, then all BETAC values must
also be 0.)
(defaults: ALPHAC has none, BETAC defaults to O)

Freestream speed (default: 1.0)

Reference speed for Cp calculation. If CONPRS=I; then VREF is
used for the Hach number correction. (default: VINF but, if
VINF=O also, then VREF is set to 1.)

Requested average normal flux velocity, referring to the I-th
flux-section, for combination solution n_ber 1C01_ (of NCORB).
(no default; for COHFRS_, either V¢ or CC must be input for
each suction fmMuemi_l flov generated in flode 1 )

_Ip_ combination constant for the I-th SUCTION funda-
mental solution. (default: see YC, above)

A smile execution of the interactive TSO submit pro_am for a IG)E 2 incom-

pressible case is shown in Fig. 26. If the _ulxeit program is not used, an

input dataset such as that shown in Fig. 27(a) is required to accomplish the

same program execution. The JCL produced by the submit program to execute

this Mode 2 check case is shown in Fig. 27(b).

The output from MOOE 2, shown for the 7Z-panel tnlet case in Fig. 28, was

designed to be self-explanatory and differs significantly from that of NODE

in only two areas:

• The page titled "FLOCHB. FLOW COMBINATION MATRIX DATA" contains the

details of the automatic computation of the combination constants, which

are labeled "CC."

. For compressible cases (COMPRS=I), an extra column of the local Mach num-

ber, labeled HACH, is also shown on the output sheets.

The input flags for the compressible case (COMPRS=I) differ only slightly from

the incompressible case. In particular, the freestream pressure (total or

static) and freestream temperature (total or static) must be supplied. In
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addtt|on, the user ts 91ven the optton of spec|fytng etther the freestreim

speed (VXNF) or the freestream Hach number (MINF). The number of options for

specifying the f]ux is expanded to include average flux 14ach number (Me) or

average weight flow rate (WC). Finally, the Lieblein-Stockmn correction also

makes use of an incompressible reference veloctty (VIB_) which the user may

optionally control.

5.2.4 DF12 Program Limits

The following program limtts and guidelines must beset by the user for Hode 1:

1. Ibxtmum total t panels: 2000 . .
(thts tncludes IfJg[Lr-=Peeels, extra-strip panels (tf any), etc.)

2. MmxtmmtotA1 tsecttoasj I00
(tncludm HAKE _ etc.)

3. llaxlmm total t str|ps: 300
(Includes i1_! s_)

e Maxtmum# 11fttngS_t_: 100
(Includes oe-'_-__SRFV strtps, and "extra" strtps (tf any))

5. Haxtmm # IBLT sections: 5 (see also 11 belov]

6. Maximum # SRIrV sections: 5 (see also 11 belov]

7. All LIFT secttons (if any) must precede all other secttons tn the input

geometry dataset.

8. Al1 WAKEsections (if any) must follow al1 other sections in the input

geometry dataset.

9. The order of WAKE sections (if any) must coincide with the order of LIFT
sections to which _ WAKE sections correspond.

10.

11.

12.

No N-line on any LIFT section my be of zer___oolength.

D6LT and SitFV sections my not _t___hhbe tnput at the same ttse.

Nonzero BETA cannot be requested t f NSYH=I.

For Hode 2:

13. Only FLUX sect|ons and/m" off-body potnts may be input (along with the
control flags, of course).

14. Haximum total # FLUX panels plus off-bod_ points: 2000
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15. The maximumtotal # FLUX sections: 20

16. Total f of (VC+HC+MC+CC) conditions specified < (#I)BLT + #$RFV) sections
that were input for Mode l.

17. "Impossible" flow co¢Inations should not be requested, e.g. if Mode 1 was
run wlth only one angle of attack, then Mode 2 cannot possibly "combine"
the Mode l fundamental flows to achieve any other angle of attack except

the one specified in Mode I.

5.2.5 Post-Processing Progrm: VECPLOT

Input to the velocity vector plotting program, VECPLOT, consists of: (1) an

unformtted P/V (pressure/velocity) dataset (either on-body or off-body, i .e.

FLUX), and (2) a unit 5 card-tinge dataset. The -formt" of the P/V dataset

(vhtch is created automttcally for on-body results of RODE 1 (tf 1_-1), and

et_ on-body (if 1P¥-1 ) and/or FLU)( secttons (tf _lPV-1) for IN)DE 2) ts shorn

in Ftg. 30.

The unit S card tmge dataset for VECi_OT is tn ILqqELIST/INPUT/ forget:

IDEBUG

VR(F

RYLENG

NVIEMS

KVIEUS(1)

0 : (default) normal execution
1 : generate debug print

Value used to scale velocities before plotting vectors
(0.O + draw all vectors with unit length)

Length of a unit vector in rasters (note that page width, for

example, ts alvays 4000 rasters)

Number of ,user-defined" views
(default: NVIEMS=O)

Where KVIEklS define up to lO ,standard-views"
1 = side view

2 = top
3 = bottom
4 = inside
5 = front
6 : rear
7 = iomn" outside front 45"

= uPPer outside front 45 °= lover outside rear 45 °

10 : upper outside rear 45 °
If KVIE)(S(I)=O, then all 10 views are drawn
(default: KVIEMS(1)=O)
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KSECT Sectton numbersfor which plots v111 be dram. Up to 40
secttons can be selected. If no values specified, then a11
sect Ions wt 11 be drawn.

If NVIEWS>O, then NVlEWS addltlonal cards are requlred:

PSI(I), THET(I), PHI(I) (3F10.6)

defining roLation angles (see explanation in TSO submit procedure, Fig. 26)
for each "user-defined, vtew.

A sample execution of the Interactive ¥ECPLOT subutt CLTST is shoum as part of

the DF12 Hode 2 TSO submit tn Fig. 26. The JCL stremthat vms produced Is

shown tn Ftg. 27(c). A sawle output of YECRLOT tsshom tn Ftg. 29.

5.2.6 Post-ProcesstngProgrm: ISOPLOT

Input to the lsoqrm plotttng progrm ISORLOT, co_hN_s of: (l) an unformtted

PlY (pressureJveloclty) dataset from _ 1 or _ 2, and (2) a unit S

card-tinge dataset contafntng control flags wttten tn IMN£LIST/TIIPIJT/format:

IDEBUG

]SCAL

0 = (default) norml execution
1 = generate debug prtnt

Scale cleftnttton used to set Cp utntmm and lncremnt values:

1 0.02
2 -3.0 0.05
3 -7.0 0.10
4 -15.0 0.20
5 No 1tmtt _tomtlc

(default: 5 )

IPLOTS

NVTEMS

Plot selection flag:
0 = generate a11 plots
1 = Cp plots only
2 = delta-star plots only
3 = skin-friction plots only

Number of "user-deft_jd" vtews
deftned)
(default: NVXEMS=O)

(up to 9 vtews can be
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KVIBS(I)

KSECT

Define up to 10 "standard-views"
1 :stde view

4 = inside
5 = front
6 = rear
7 = lower outside front 45°

8 = upper outside front 45°
9 = lower outside rear 45 °

I0 - upper outside rear 45°
If KVIEWS(1) --O, then a11 10 views are draw.

(default: KVIEWS (I)=0)

Section numbers for which plots will by drawn. _Upto
40 secttons can be selected. If no values specitlea,
then all sections wt11 be dram.

If MVlEWS>O, then RVlBIS additional cords Ore required:

i_I(I), "Bt_(I), IqI(l) (31:10.6)

deftnlmj rotation ingles for eack -user-defined" view.

A samle execution of the interactive ISOPLOT suNtt CLIST is sho_ ,:ts port of

the DF12 Itxle 2 TSO sulxwit tn Ftg. 26. The 3CL str_ that was produced ts

sh_ in Ftg. 27(d). A sample output of the ISOPLOT program ts shom tn Ftg.

29.

5.2.7 Post-Processing program: TRACE-ON

Unlike VECPLOT and ISOPLOT, thts is an interactive (_ TSO) surface streamline

calculating program which requires as input a P/V (pressure/velocity) dataset

from MODE 1 or MODE 2 and us_ responses to the tnteracttve cluesttons. In

using this program, one ar_ which the user must understand ts them ethod of

telltng the program whc_re to "start" strmltnes. For the p_poses of

TRACE-Off, the body surface is assumed to consist of a n_er of SECTIONS, each

of which consists of an NU hy fly grid of data, Where NUand NVrepre_t the

nlberofpotnts along N-lines of data, and R-lines of data, respect|rely, of

a given SECTION. Note that both MODE 1 and MODE Z extrapolate the computed

pot_tial flow velocity data to the edges of the input SECTIONS. Thts means

that there are more data values tn the P/V dataset than panels printed on the

MODE 1 and MODE Z output sh_ts. For example, say the user inputs a section
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with M "chorduise" points on each of N N-1tnes (see Ftg. 31); the numberof

panels producedIn the potential flow program ts (14-1) x (N-I). But the

number of data points on the P/V dataset ts (M+]) x (N+l) since the data is

extrapolated "chordwtse" (i.e. In the N-ltne direction) at the beginning and

end of the strip of panels, and "spanwise" to the "inboard" and "outboard"

edges of the section. All the data points my therefore be described by

parametric variables in the N-line and H-line direc- tions; these are referred

to, herein, by U and V, respectively. Thus the fist contro| point of the

potential flow program is called U=2., V=2., (not 1.,1. since 1.,1. would

refer to the corner of the section). The second control point (along the same

strip of panels in the section) would be U=3., V-2., and so on, as show, in

the figure.

A sample execution of the TPJ_-ON progrm ts shoun tn Ftg. 32, and a plot of

the calculall:ed stremllnes are shorn tn Flg. 33.
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Figure 1. Representation of a three-dtmenstoM1 lifting configuration.

Cp

o

t

• Exp.

mM

m mall

t

0 .2 .4 .6 .8 LO 0 .2 .4 .6 .8 LO

xlc xlc

Figure 2. Chordwise pressure distribution for the EET configuration, a = 0.55.

n = 4.31 _, (a) low order methods, (b) high-order methods.
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Figure 7. Two methods for obtaining the static fundamental solution,
(a) surface vorticity, (b) ring vortex.
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Figure 9.
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Circular Inlet with Leading-Edge Slat and Centerbody.

View. (b) Cross-Section through Upper Half of Inlet.
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Figure 9. (c) "Faceted" Solid Rendering of Single-Slat Case.
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Figure 9. (d) "Smoth-Shaded" Sol|d Rendering of Side-View Closeup of
Single-Slat Case.
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Single Slat Inlet. (a) Pressure Distribution on Cnwl aeM Cemterhoe,/
(b) Pressure Distribution on Slat.
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Figure 14. Off-Body Isobars for Inlet with Single Slat. Static Solution.

71



::::::

Ftgure 15. Off-Body Isobars for Inlet with Stngle Slat. Zero Angles of
Attack and Yaw. No Added Suction.



Ftgure 16. Off-Body Isobars for Inlet wlth Single Slat. Combined Solution,
40 ° Angle of Attack, Zero Yaw, Fan Face Veloctty Twice Freestream.
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(a)

Figure 17. Three-Dimen,Jonal Double Slat Inlet Conftgura=ion.
VJew.

(a) Front
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(b)

Ftgure 17. (b) Rear Vtew of Double Slats.
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(c) Cross-Section Through Lover Half of Inlet.
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Comparison of Main Slat Pressure Distributions on Single and uouble

Slat Configurations. 40 ° Angle of Attack, Zero Yaw, Fan Face

Velocity Twice Freestream. (a) 13 ° from Top Center. (b) 90° From

Top Center.
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Figure 19. Velocity Vectors for Double Slat Configuration. 40° Angle of _,ttack,
Zero Yaw, Fan Face Velocity Twice Freestrean. (a) On Outer Cow!

Surface. (b) On Inner Cowl Surface.
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(a)

Figure 20.

(b)

Wire-Frame Ptctures of the 7Z-Panel (on the "Half-Body")
Round Inlet. Note the "Doublet Surface" Visible Inside At
the Rear of (b).

8O



ORfOmAL PAGE IS
•OFPOORQUALrrY

(a)

(b)

Figure 21. (a) Yariatton of Peak Cp v_th Theta (Circumferential Angle)
(for the 72-Panel Round Inlet) for the Old and New Stgma-Fittin 9
Procedure. (b) Sample Comparison of Chordwtse Variations for a
Fixed Theta (8 = 75 Degrees).
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Figure 22. Coordinates used for the 72-panel s|mple tnlet check case.
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H31HGO27F: 72-PANEL SIMPLE INLET FLAGGED AS "SRFV" SECTION.

&Z ICOH80=I, IPR132=l, ALPHA=O,IO &END

Figure 24(a). Alternative input dataset for DFI2, Rode I, for the 72-p_nel

simple inlet check case.

/IN
//_ PC-PATCH FITTING FOR: H31HGO27F

//PCPATCH EXEC PGM:H31K,PARM:'l°OoO', REGION=IOOOK
//STEPLIB DD DSN=TSOT3DF.Cr;F.LOAD,DIS P:SHR
//FTOIFO01DD DSN:TSOT3DF.TErIFGEOrl.DOSO985.T092117,
// DISP=(OLD,DELE TE)
//FTO6FOOl DD SYSOUT:A
//FT11FO01DD UHIT:SYSDA,SPACE:(TRK,(30,10)),
II DCB:(RECFH:VBS.BLKSIZE:19069)
//FT12FOB1DD UNIT:SYSDA,SPACE =(TRK,(30,IO))'DTSP=(NEM'PASS)"
// DCB=(RECFH=VBS,BLKSIZE:19869)

//u
//m
//N
//I
//3
//NEUHMm
//STEPLIB
//FTOIF|81
//
//FTO2FOel
//
//FTe_Fe01
//
//FTOSFO01
//FTO6FO01
//FTOSFO01
//
//FTO9F$|I
//
//FTIOFO01
//
//FT11FOOl
//
//FT12FO01
//
//FT13FO01
//

//FT14FO01
//
//FT15FO01
//
//FT16FO01
//
//FT17FO01
//

.//FTlaFO01
//
//FT2OFO01

3-D NIGHER-ORDER LIFTING NEUI_HN SOLUTION.
(MITH INLET CAP&BILITY)

MODE 1, CASEID: GO27F

EXEC l_I_qUIM,REGIOM:_SMOK
DD DSN=TSOT3DF.DF12.LOAD,DISP=SHR
DD DSN=_.PCPATCH. FT12FO01,

DISP=(OLD,DELETE)
DD DSN=TSOT3DF.GO27F.FUNDSOLN,

DISP=SHll
DD UNIT=SYSDA,DCB:(flEC F1q=VBS,BLKSIZE=lgO69)"

SPACE=(TtK,(1,10))
DD DSH:TSOT3DF.DF12.DO8098S.TO92117,DISP=(OLD,DELETE)
DD SYSOUT:AoDCB:(RECFM:FBA,LRECL:169,BLKSIZE:16900)
DD UNIT:SYSDA,DCB:(RECFM=VBS,BLKSIZE=19069),

SPACE:(TRK,(1,10))
DD UNIT:SYSDA,DCB:(RECFH:VBS,BLKSIZE:19069),

SPACE:(TRK,(I,IO))
DD UHIT:SYSDA,DCB:(RECFH:VBS,BLKSIZE:19069),

SPACE:(TRK,(1,10))
DD UHIT=SYSDA,DCB:(RECFM:VBS,BLKSIZE=19069),

SPACE=(TRK,(1,10))
DD UNIT:SYSDA,DCB:(REC_ l:VBS'BLKSZZE=19069)°

SPACE:(TRKo(1,10))
DD UHIT:SYSDA,DCB:(_ECFH:VBS,BLKSIZE:19069),

SPACE:(TRK,(1,10))
DD UHIT:SYSDAoDCB:(RECFM:VBS,BLKSIZE:19069),

SPACE:(TRK,(1,10))
DD UHIT=SYSDAoDCB:(RECFH:VBS,BLKSIZE:19069),

SPACE:CTRK,(1,IO))
DD U.IT:SYSDA,DCB:(RECFM:VBS,BLKSIZE:19069),

SPACE=(TRK,(1,10))
DD UHIT:SYSDAoDCB=(RECFM=VBS,BLKSIZE:19069),

SPACE:(TRK,(1,10))
DD UHIT:SYSDA,DCB:(RECFIq:VBS,BLKSIZE:19069),

SPACE:(TR_,(I,IO))
oo _ ........

Figure 24(b). Rode 1 JCL stream for the 7Z-panel simple inlet check case.
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INCOMPRESSIBLE COMBINATION RESULTS FOR THE 72-PANEL INLET.

&Y IPR132=1, [PV=I, NCOMB=2, ALPHAC=O,S, VC=1.3,1.5 &END

Figure 27(a). Alternative input dataset for DFI2, Mode 2, for the 72-panel
simple inlet check case.

//g
/#w

//w PC-PATCH FITTING FOR: TSOT3DF.H$1H.GO27E.DATA//N

//PCPATCH EXEC PGM=H31K,PARH:'l,O,O',REGIOH=lOOOK
//STEPLIB DD DSH=TSOT3DF.CMF.LOAD,DISP=SHR
//FTOIFOOZ DD DSN:TSOT3DF.TE_PGEOM.DOOO985.T15_OO0,
// DISP=(OLD,DELETE)
//FTO6FO0] DD SYSOUT:A
//FT11FO01DD UHIT:SYSDA,SPACE:(TRK,(30olO)),
// DCB:(RECFM:VBS,BLKSIZE:19069)
//FT12FO01 DD UHIT=SYSDAoSPACE:(TRK,(30,IO)),DISP=(NEW,PASS),//

DCB:(RECFII:VBS,BLKSIZE=19669)/w
//N
//N
//N

//N
//N
//N

//WEUIUNN EXEC Pa_'-IUIN,REGIOH=400OK
//_TEPLI| DD DSH=TSOT3DF.JF|2.LOAD,DISP=SHR
//FTO2FO01DD DSN:TSOTSDF.GO27F.I_LN,
// DISF=_U
l/u

/tm PV DATASET:

3-D HIGNER-OROEk LIFTING NEUNAHN SOLUTION.
(WITH IHLET CAPABILITY)

HODE Z, CASEID: GOZTF

//FTO3FO01DD DSN=TSOT3DF.PY.GO27F.HOOF_Z.ON,
// DISP:(NEM,CATLG),UNIT:TSODA,SPACE:(TI|K,(IO,IO),RSE)//N

//FTO4FOO10D UHIT=SYSDA,OCB=CRECFPI=VBS,BLKSIZE=lgO69),
// SPACE=(TRK,(|,IO))

//FTOSFOO1DD DSN=TSOT3DF-DFlZ.DO8098S.TIS408|,DISP=(OLD, DELETE)
//FT$6FO0! 00 SYSOUT=A,DCB=(RECFH=FBA,LRECL=169,BLKSIZE=1690e)
/IFTOOFO01 DD UNIT:SYSDA,D('B:(RECFH:VBS,BLKSIZE:19069),

inlet check case.

// SPACE=(TRK,(,olO))
//FTO9FO01DD UNIT=SYSDA,DCB=(RECFH=VBS,BLKSIZE=19069),
// SPACE=CTRK,(1,1e))
//FT18FO01 DD IJ_IT=SYSDA,DCD=(RECFH=VBS,BLKSIZE=19069)
// SPACE:(TRK,(1,1|)) °
//FT11FO01DD UNIT:SYSDA,DCB:(RECFM=VBS,BLKSIZE=19069)
// SPACE=(TRK,(1,10)) "
//FT12FO01DD UHIT:SYSDA,DCB:(RECFH:VBS,BLKSIZE:19069)
// SPACE:(TRK,(1,10)) "
//FT13FO01 DD UNIT:SYSDA,DCB:(RECFM:VBS,BLKSIZE:19069),
// SPACE=(TRK,(1,10))
//FT16FO01 DD UHIT=SYSDAoDCB=(RECFM=VBS,BLKSIZE:19069),
// SPACE=(TRK.(1,10))

//FT15FOO1 DD UNIT:SYSOA,DCB=(RECFH=VBS,BLKSIZE:19069),
I/ SPACE=(TRK,(1,1O))
//FT16FO01 DD UNIT:SYSDA,DCB:(RECFM:VBS,BLKSIZE:19069),
// SPACE:(TRK,(I°IO))
//FT17FO01DD UHIT:SYSDAoDCB=(RECFM=VBS,BLKSIZE=19069)
// SPACE:(TRK,(1,10)) "
//FT18FO01DD UNIT=SYSDA,DCB:(RECFH:VBS,BLKSIZE=1SO69),
// SPACE:(TRK,(1,10))
//FT2OFO01DD DSH=X.PCPATCH.FT12FO01,
// DISP:(OLDoDELETE)

Figure 27(b). Mode 2 JCL stream for the 72-panel
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//VECPLOT EXEC
//STEPLIB

//FTOSFO01

//FTO6FOO1 DD
//FT1BFO01 DD
//

//5D_060 DD
//
//

Figure 27(c).

JCL TU VECPLOT A 3-D PRESSURE/VELOCITY FILE

p_TI=UVECPLT,REGION=950K
DD DS_t=TSOT3CP.H17.LO_D,DIS P=$HR

DD

SYSOUT=A,DCB=(RECFM=VA,BLKSIZE=141)

D$ti=TSOT3DF.PV.GOZ7F.rIODE2.0tt,
DISP:$HR
DStI=ROUTE.DAC.GCMIF.BON.FLOO60.VECPLT,

DISP=(HEtJ,KEEP),
Ul_IT=TAPE16,LABEL=RETPD=10,DCB=DEN =3

JCL stream to execute the VECPLOT program.

/IM
//N

//[SOPLOT EXEC

//STEPLZB
//FTOSFO01

//FTO6FO01 DO

//FTZ8FO01 DO
//

//SD_060 DD
//
//

JCL TO ISOPLOT A $-D PRESSURE/VELOCITY FILE

PGM=UISOPLT,REGZON=7$OK
DD DSN=TSOT3CP-H17.LOAD,DZSP:SHR

DD *

SYSOUT=A,DCB=(RECFM=VA,BLKSIZE=141)
DSN=TSOT3DF.PV.GO27F.MODF-2.QH,
OISP=SHR
DSH=ROUTE.DAC.GCMIF.BOH.FLSO60.ISOPLT,

DISP=(NEM,KEEP),
UNZT=TAPEI6,LABEL=RETPD:lO,DCB:DEN:$

Figure 27(d). JCL stream to execute the ISOPLOT program.
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(a)

(b)

ORIGINAL PAGE 13
OF POOR QUALIFY

SURFACE VELOCITY vECTOR5 IN LOWER FRONT L,_ DEGREE- VIEw

INCOMPRESSIBLE C0MBINATION RESULTS FOR TIlE 72*PAN[L INLET.

_ V - f_&C " O,O R|L. Ct* - 0 71_ O'/a |Ol_

/

Figure 29.

5URFACI. ISOBARS IN LOWER FRONT W5 DEGREE VlE_l

INCOMPRESSIBLE _0MBI;_ATION RESULTS &'OR THE "/2-PANEL INLET.

_ACW NO " 0.0 d_N " _ 000 O_G C_IN " -W _ l_.f _I_ H0 _LIMA_

Afy mA_ * (1 o roll CL * o "fly c_x * O_J 07/IV'(_%

14[AVY L IN[ INOICAI[S IcaO¥_.U[ * -_ W0O0

OA_D L IN[ l_q4E'_lCaVES lCjOvJ_l.t.q[ * 0 0000

TI_I_NTS IN I¢_#ALI.A • 0 tOO&

(a) Sample VECPLOT output from DF12 Mode 2 for a combined ALPHA=5

degrees. (b) Sample ISOPLOT output for same case.
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ORIGINAL PAGE IS

OF POOR QUALITY

NFLAG5. (ZFLAG(I), I *I,NFLAGS)

NTZTL[

(TZ•LECI), 1"1,20)

Z

E

SN(F ¢R(F, BREF,XREF, YN_F, ZREF

NS[CT •
: NLZN[I,M2uIe, ZSTYPE, ZD, CDESCRP(|),|*loZD)

Ml, (X(|),Y( I ), Z(I ), I *1, NI)

N

L

M Z

N

6 (

1

E :
NIL ZN(2 N2oex, ISTYPE, ZD,(O[SCNP(I),i*I, ZO)

¢ : Me, (X( i ), Y( I ), Z(I )- i el, N2)

N

T L

: N

E

: a

MS0LNS NN[¢

: _LPHA, B[TA NMCH N[ MFR° • ,

: : : M (Vx(I),V¥(i)°vZ(i)°¢p(i)'ie2"M1)

: : N

: : I.

: : _[

: : N

: E

N

N :

S

S

0

E

L

¢

N

1

S

R (dlstr(i)'¢f(I)'iel°ml)

E

¢

Cl,C.,¢,v

M (Vx(I),Vv ( | )" vZ( | )' CP(I )' I *1# N2)

N (dlStt(|),¢f(i)'i°l"el)

E

C

¢..C.,¢,v

CL, ¢D CSF CO, CROL, CY&M, ¢Dv

: N (¥x(i). ¥y( I ), Vz( I ), Cp( i ), S *1, N1)

:, N

E

L Cl. Cm, Cev

1" N (Vx( i ), V¥( i ), VZ( I ), CP( | ), I "1, M2)

N N

E E

;! C

: Cl,Cm Celv

CL,CD, CSF, CN, CROL, CYAW,¢Ov

CL,COt°CSF,CN,¢ROL, CYAM, CDv, N, (OUN(I)'I*I*N)

- °ILPN_,E[•A NACH, RE, NFR

Nvlt keve Onl rims.

Must hove one title.

Multiple title•.

fleferen¢e quintltlel.

Nuller e_ Io¢_len|.

INII_O InfO eor le¢tlon,

ie. seometry dofinltieB.

lloxt NI I no, etc.

NVliIP Of lelvtl ono, rg¢ erlll.

IF!ew ¢ondl tl o_s.

Nllne Yelos, Preslvri•.

Nline B.L. guest I I_i el.

T.8. D.

T. II. D.

T. II. D.

Nli_e ¢kirecter| et | ¢$.

Next NII ;_eo etc.

Section ¢h|rlCterlst|cI

Next _ection, etc.

• oral Conflsurl_l on chiP.

INoxt Solution, etC
I

!

CL COt C$1r0(:M,C ROL,C_fplt_'cDv'N'(OUM(|)' I*I"N) II[nd Of Irl le.

Figure 30. P/V (Pressure/Velocity) dataset format.
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(1"!+1,1)

(2,1} (2,2)

(1,1)

(1,2) •

(1

(M,N)

,N+I )

(I,N+I )

Figure 31. Extended set of velocity points stored in the P/V dataset: solid

symbols are standard panel control points, hollow symbols are

interpolated/extrapolated points. For MxN input nanel defining

points, (M-I) x (N-I) panels are produced, and (M+l) x {N+I)

velocity points are calculated and saved.
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NOO • _. JXlCIIq.OT.________)
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Sm.I/YINn IlnEn
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t o08_53ele _vO.-FIIS_

_ I f _ |i _l ,11- III )
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lilff Cl,lnlll_.'&lllt*. all _ 111)
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Figure 32.

t4.MMO s.n
118 _i _Iie Ir_.

Sample interactive TRACE-0N execution for a streamline on the 72-panel

simple inlet check case.
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I

A A A

A A _ A A A A A mv v

Figure 33. Two streamlines calculated by TRACE-OH for the 72-panel simple inlet
check case.
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C.11GINAL PAGE IS
OF POOR QUALITY

(a)

,, n:2 n:_ n:,.) n=2 n:.l

Ill :) 1.n:2 m _

i_1 = 2: T

m :$: 1

el:3 n:2 el:l

C01tll(_. T

tlNPUT

m=, m= 2 _t=._

n:J n=_ n=)

_NCOIIll IECT

IItIPU T

(b)

m--4

i-- 3 I

/
m_-21

m=l/

n=l

I

I

I

I

/
/

l
n--2 n 3

_dECI'ION I

2ii 
fl:13 19:14 n:l._

I i

I SECTION 4 I
I I

I
rn:? I

m_-__ A A A
v v T T

rn:4

m:3, ....

RI =1,

_:4 6 7 8 9

n=_) "el : I0

I I

I

I SEC'rVON 2 :

I I

m=4

L . -

i \o:
rl II T't =12

I

I

SECTI ON 3 I

I

(c)

m:4 m:.) m=2 m=l

- _-n= I0-- -- ]--

/
_=9 /

SEC'T _ON 2

In=8

n=7 _L

m =1

tl=l Tl=2

I
I
i
I
I
I

TI :3 1'1:4

SECTION I

r1:5 Tl:6
I
I
I

Figure 34. (a) Examples of correct and incorrect input; (b) Plan view of the

input points on a body divided into sections; (c) Another possible

division into sections.
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APPENDIX A

CONSISTENT EXPANSIONS FOR THE POTENTIkL AJ_DVELOCITY INDUCED BY

A CURVED PANEL AT A POINT IN SPACE

A "true" panel on a body surface is the curve_ four-sided region of the surface

whose corners are input points lying exactly on the surface (Fig. B). The

boundary curves of the true panel that connect the corner points will be

defined shortly. Consider a plane tangent to the surface at some central

point of the true panel. A panel coordinate system is constructed whose origin

is the tangency point and whose z or ¢ axis is normal to the tangent plane.

The x or E and y or n axes lie in this section. The corner points of the

true panel are projected into the tangent plane along the normal direction.

By joining adjacent projected corner points with straight lines, a flat panel

is produced, which is assumed to be the projection of the true panel in the

tangent plane. This construction now defines the boundary curves of the true

panel. They are the curves joining the true corner points that have straight-

line projections in the tangent plane.

It _s a fundamental assumption of the present method that the dimensions of the

panel are small in certain senses. Certainly variations over the panel of the

normal direction are assumed small. Moreover, if a physical quantity is

expanded in a Maclaurin series, successive terms become small, i.e., if

1 _ _ f _0 (A.I)= Z _ (4_ + n_)O,O (_,n) _ Qn (_,n)
f(_,n) n=O n=

tilen

iQnl << IQml if m < n

_.so, the vertical distance ¢ of a point on the true panel

o_ the square of the horizontal distance, i.e.,

(A.2)

is of the order

The potential at a point

true panel i_

¢ = O(E2 ÷ n2_ (< v/_+ n (A.3)

(x,y,z) in space due to a source distribution on tile

A-I
2274H



-o , , - • ,l

wher_

a dS (A.4)
S

2
r = (x - _)2 + {y _ n)2 + (z - C)2 (A.51

and where S is the surface area of the true panel. It is desired to express

in terns of a series of integrals over the projected flat panel. Thus it

:ay be stated that the potential of the true panel is "expanded about" that of

the flat panel. To illustrate the process more co_letely, a three-term expan-

sion is derived, although only the first two terms are ultimately retained in

the present method.

In panel coordinates the equation _ : f(_,n) of the surface of the true

panel may be expanded in a Maclaurin series in the form

= [PJ + 2QCn + Rn2] + [T30E3 + T21C2n + TI2Cn 2 + TO3 _3] + ... (A.6)

: _2 + _3 + "'"

There are no constant or linear terms in (A.6) because the origin is at the

tangency point. All coefficients in (A.6) are constants proportional to

derivatives of { at the origin. The coefficients P, Q and R, which are the

only ones actually used in the present method, are the second derivatives.

They _re referred to below as the surface curvatures to which they are closely

related. The quantity _2 is second order in _ and n and thus in panel

dimension t, and _3 is third order.

The equation of the true panel may be written

F(_,n,_) : C- _2(_,n) - _3(_,n) - ... : 0

Then, taking the gradient gives

(A.7)

grad F : _ - (_2_ + K3_ + "")_ " (_2n ÷ _3n + "")_ (A.8)

_lhere subscripts _ and n denote partial derivatives and i, 3, C are the

unit vectors of the panel coordinate system. The vector grad F is normal to

the panel at any point. The unit normal at any point is
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)radn : Igrad

so the C-component of the unit normal is

l
Z

n¢ = Igrad FI v/l + (¢2_ + C3_ + ...)2 + (¢2n + ¢3n + "")2

(A.g)

(A.IO)

This can be expanded in the form

l + + . )2 + ( + + . .)2]
n : l - _ L(c2_ c3_ -- ¢2n ¢3_ "

+ 3 L(¢2_ + ¢3_ + ...)2 + (¢2n + _3n + ...)2]2 + ... (A.ll)

From (A.6) it is clear that ¢2_ and ¢2n are first order, C3_ and C3n are

second order, etc., so the leading terms from the first square bracket of

(A.ll) are second order, and the leading terms in the second square bracket

are fourth order. Thus,

= 1 ¢2n) (A.I2)n¢ 1 - _ (¢_ +

is a valid three-term expansion with second (linear) term zero. )Coreprecisely.

n¢ = 1 - _ L(2P_ + 2Qn)2 + (2Q_ + 2Rn)2j

= 1 - 2L(P2 + Q2)_2 + 2(Pq + QR)_n + (Q2 + R2)n2j (A.13)

n¢ = I - 2@2

where @2 is second order. The elementary surface area dS on the true panel

is related to the elementary area dA = d_dn in the tangent plane by

ncdS: dA (A.14)

dS : (l + 2q2)d_dn (A.15)

The source density is strictly a function of surface distances along the panel.

However, it can be shown that there is no difference between surface distances

and _ and q through second order. Thus it suffices to define o in terms

of _ and n in the form
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o = ao + (axe + Oyn) + (axx E2 + 2axyEn + ayyn 2) + ..-

= Oo + Ol + 02 (A.lo)

where on is n-th order in E and n and thus in panel dimension t. The coef-

ficients in (A.16) are constants proportional to derivatives of o at the

origin.

Thus, to three terms

where

odS = (ao + Ol + o2)(I + 2_2)d_dn

= (o° + oI + o_)dEdn
(A.17)

o_ = 02 + 2_2oo (A.]8)

All of the above expansions are independent of the location of the point

(x,y,z).

It remains to expand l/r, which of course, does depend on x,y,z. It is neces-

sary to differentiate three ranges of value of r:

(a) r >> t for all {,n

(b) r = O(t) for all _,n

{c)

r << t for some E,n

r = O(t) for other _,n

(A.I9)

In other words, the ranges amount to the situations where the distance of the

point (x,y,z) from the origin of pane] coordinates is, respectively large, of

the order of, and smll compared to the dimensions of the pane]. It turns out

tnat the range (b) where r is of the order of the pane] dimensions is the

essential one. In the far-field, range (a), ]/r is expanded in negative powers

of r o = (x 2 + y2 + z2)l/2 The resulting expansion differs in no important way
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from the usual far-fieldmultipole expansion and thus ]_ relatively easy to

derive. An order-of-magnitude comparison of the expansions of ranges (a) and

(b) shows that while certain terms become small faster than others as the

distance r increases, the expansiow, derived for range (b) is valid for range

(a), although it is conserwtive in that some retained terms could be elimi-

nated. For points close to the panel, range (c), it is necessary to assume

that they lie on a line through the origin having a finite slope with respect

to the tangent plane. Under this condition the order-of-magnitude analysis of

range (b) remains valid. This is just what the physics of a panel method

requires in any event. Eventually, the control point of the panel is identi-

fied with the origin of panel coordinates and the above condition states that

if a point approaches the surface, it does so at a control point. Since it is

only at the control points that the normal velocity boundary condition is

applied, approaching any other surface point would give physically meaningless

results. Thus the derivation below concentrates on range (b), which may be

thought of as the effect of a panel on control points of nearby panels.

The distance r can be written

2 (x _)2 + (y . n)2 + z2r = -

t)

= r2 - 2z_ + _

2
- 2z_ +

(A.20)

where rf

panel (Fig. 3). Thus

l l l
-=P z
r rf v/l ÷ (-2z{ + { )/rf

is the distance between (x,y,z) and the point (_,n,O) on the flat

2 3 4z2c2 + .]

1 [I 1 -2z{ + C +i_ ""
= r-_ " _ r_

z2 1 2 (A.21)

1 [l + z __+ (3_ __)__f+ ...]
= rf rf rf ,f r

Note that (z/rf) is of order unity, and, since rf is O(t), the quantity _/rf

is also O(t), i.e., O(E). If use is maCe of (A.6), the above becomes

A-5
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]_ ] + +'-" 2 + +-'- 2
r rf [l + r-_ rf + ( r_f- )( rf ) ]

(A.22)

from which the desired three-term expansion is obtained in the form

2
z2 l 42

] l z _2 [z_3 (_r__f _ r_ff_ = r-_ {l + rf rf + rf _f + - ) ]}

(A.23)

or, for abbreviation,

1 _ l (l + c, + c2) (A.24)
r rf

where cn is of order n in _ or n and thus in t.

(A.17) to obtain the expansion

Now this is multiplied by

adS = 1 0_)(I + cI + c2)dA
_ (°o + 01 +

dA

= r-_[% + °1 + o_
(A.25)

+ ClOo + cioI + cIo_

+ c2oo + c2o I + c2o _]

The square bracket in (A.25) must be reduced to a three-term expansion using

the facts that

and

oo >> oI >> o2

1 >> cI >> c2

(A.26)

(A.27)

The leading (lowest order) term is clearly oo because all terms are small com-

pared to it. Possible members of the second term are oI and ClO o because all

remaining terms are small compared to one or the other. Thus, both of these

are retained in the second term, because neither can be guaranteed to be small

compared to the other in all cases. The question then arises as to which of

the remaining six terms of the square bracket of (A.24) need to be retained in



the third term of the expansion. Obviously, if any of these six is small com-

pared to any other, it may be discarded. This eliminates all but 02, ClO l and

c2oo. Thus, the three-term expansion of the integrand of (A.4) has the form

o dS dA
=-_f [o° + (ClO° + ol) + (c2o° + ClO l + oi)] (A.28)

when the abbreviations of (A.16) and (A.24) are replaced by their actual

expressions, the three-term expansion of (A.4) is

dAI {2 °x¢ rf+Oyn AI
SI z _ dA + II d
A r_ A

oo f/ (z_+_ z _ -_._ ) + II z_ (Ox_+ Oyn)d

A rf rf rf A rf
(A.29)

+ill[ 2
A _ °xx{ + 2OxyEn ÷ °yyn2 + 2(p2 + Q2)_ + 4(PQ + QR)_n

+ 2(Q2 + R2)n2 I dA

where the integrals are over the projected flat panel. Defining the integrals,

(A.30)

the three-term expansion of the potential can be written

¢ : @(0)Oo + [¢(c)oO + ¢(Ix)ox + _(lY)oy]

(A.31)

+ [¢(20)o ° + ¢(2x)ox + ¢(2y)oy + ¢(2XX)o_x + 2m (2xy)oxy' + @(2yy)o_y ]

where

o' = o + 2(p2 + Q2)
XX XX

o' = o + 2(PQ + QR) (A.32)
xy xy

O_y = Oyy+ 2(Q2 + R2)
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The individual potentials in (A.30) are

¢(0) = io01

¢(c) = z[Pi203 + 2QII13 + RI023]

(A.33)

(A.34)

@(I<) = if01

¢(ly) = loll

(A.35)

¢(20) = z[T301303 + T211123 + TI2T123 + T031033]

+ _ z2[P21405 + 4PQI315 + (2PR + 4Q2)I225 + 4QRI135 + R21045 ]

I
. _ [p21403 + 4P013I 3 + (2PR + 4Q2)I223 + 40RII33 + R21043 ]

¢(2x) = z[Pi303 + 2Q1213 + RII23]

¢(2x) = z[Pi213 + 2QI123 + RIo33]

(A.36)

(A.37)

¢(2xx) = i201

¢(2xy) = illl (A.38)

¢(2yy) = I021

The first term of (A.3I), ¢(0)oo, corresponds to a flat panel with a constant

source density. This is, of course, the term used in the first-order method.

The second term of (A.3|) contains the second derivatives P, Q and R, of the

surface shape but no higher derivatives and first derivatives of the source

density but no higher derivatives. Thus the second term of (A.31) corresponds

to a paraboloidal panel shape with a linearly varying source density. The

third term of (A.31) contains all the preceding quantities and _lso the third
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derivatives of the surface shape and the second derivatives of the source den-

sity: a cubic panel with a quadratic source density.

The equations above illustrate the fact that succeeding terms in the expansion

for the potential of a pane] increase rapidly in complexity. A single first

term is followed by a second term containing five individual parts, each with

its own integral of the form, Eq. (A.30). lhe third term contains 23 individ-

ual parts which together involve 17 different integrals of the form of Eq.

(A.30). The great increase in complexity associated with retaining the third

term of (A.31) appears to be unjustified at this time. Accordingly, the

higher-order method accounts for the source density effect by considering the

first two terms in Eq. (A.31). This is the approach that has previously been

follomed in the two-dimensional and axisy_etric higher-order methods (Refs. 17

and 18).

J
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APPENDIX B

GENERATION OF PANEL GEOMETRIC QUANTITIES BY MEANS OF BICUBIC SPLINES

Very elaborate geometry fitting procedures based on parametric bicubic splines

have been developed at Douglas Aircraft Company over many years. A description

of this technique is beyond the scope of the present report. A survey is con-

tained in Ref. 19. In the present application the method is considered a

"black box," although several minor changes had to be made.

The points defining the body are input in the usual way. Each pane] is fitted

by a bicubic surface in terms of two parameters, u and v, that vary from 0 to I

over the panel. (The panel is the unit square in parameter space.) This per-

mits the welT-known procedures of Ref. 20 to be used as follows.

Let a point, (x,y,z), of the panel be represented as a vector

xl + yj + _k

The parametric cubic fit then yields

: ;(u,v)

These expressions may be differentiated analytically to give

(B.I)

(B.2)

xu, xv, (B.3)XUU' XUV" XVV

as functions of u and v.

v = constant and u = constant, respectively,

although they are not perpendicular.

The vectors xu and xv are tangent to the curves,

and thus lie in the surface

The point corresponding to u = v = I/2 is in the "center = of the panel in some

sense. It is selected as the control point and origin of coordinates of the

flat projected panel. The derivatives of Eq. (B.3) are evaluated there, and in

a11 that follows _ and its derivatives are assumed to be those at u = v = I/2.

The unit normal vector to the panel, which is also the unit vector along the

axis of panel coordinates is
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X u X X v
(B.4)_=_e =* "1X X V

where the sign is selected tc _i,yc an outward normal. The unit vector along

the _ axis of panel coordinates is taken tangent to the v = constant curve

which nearly parallels the N-lines,

Xu

Thus the unit vector along the n axis of panel coordinates is

(B.5)

x (B.6)
The components of the three unit vectors thus obtained comprise the transfor-

mation matrix.

Now define

h = u - 112, k = v - 112 (B.7)

and consider the Maclaurin series for {, n and ¢ in terms of h and k.

They have the form

= Ah + Bk + (second order)

q = Ch + Dk + (second order) (B.8)

= I/2(eh2 + 2fhk + gk2) + (third order)

There are not constant terms in (B.8), because the origin of panel coordinates

corresponds to h = k _ O. Furthermore, since the _n plane is tangent to the

surface at the origin (_e is the normal vector), the series for { has no

linear terms. Reference 20 gives the coefficients of Eqs. (B.8) as

A= _u " le B = _v " Te
(B.9)
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C = xu • 3e = 0 O - " e

_UU _ XUV • n g = Xvv ° n
e= ° f=+ ÷ ÷ ÷ (B.IO)

The first two of Eqs. (B.8) may be inverted to give

h = a_ + hn + (second order)

k = c_ + dn + (second order)

(B.II)

where

D b= B C d__A
a=_, -Z' c=z' A

A = AD - BC

(B.12)

Equation (B.12) may be inserted into the third equation of (B.8) to give the

desired form

(B.13)

The result is

p = l/2[ea 2 + 2fac + gc 2]

q = ll2[eab + f(ad + bc) + gcd]

R = 112[eb + 2fbd + gd2]

(6.14)

For generality c has been included in Eq. (B.14), but in the present applica-

tion it is zero, which simplifies (B.14).

It remains to compute corner points in panel coordinates. The four input

points bounding the panel are transformed into panel coordinates to obtain

( , nk, ¢ ), k = I, 2, 3, 4. They are projected into the plane by simply

ignoring Ck" Next the side between points I and 2 is rotated to make nI = n2.

The midpoint and length of the side are, respectively,
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: (E + K2), I *(nI + )

* *)2 * * 2d : /(E I - _2 + (nl - n2)

Then the final corner point coordinates are

(B.15)

nl = n2 = TI

d

d

(B.16)

A similar calculation is performed for the side between the points 3 and 4.

It should be noted that the underlying parametric cubic geometry routine uses

the surrounding input points to generate the fit to a panel. The routine con-

siders only points on the sme section, and thus slightly different results can

be obtained depending on how the body is sectioned. For fitting purposes, the

wake is considered a separate section, so that the routine does not try to fit

around the trailing edge. On the semi-infinite last-wake panel the derivatives

P and Q are set equal to zero, so that the panel has straight generators in

the stream direction, but R, the spanwise second derivative, may be nonzero.
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APPENDIXC

AREA MOMENTSOF A PANEL

The normalized moments of the area of the tangent panel are required.

are defined by

These

l II nmd di (c.I)
Inm =_A

_lhere the region of integration is the area of the panel. For example, t2100

is the area t4120 , t4Ill , t4102 are the moments of inertia or second moments.

The order of a noment is the sum of its subscripts n + m. There are two first-

order moments, three second-order, four third-order, and five fourth-order.

The present method uses up through fourth order. The _w)ments are calculated

by a straightforward but rather lengthy set of formulas.

First, nomalize the corner point coordinates by the maximum diagonal,

_k = _k/t' _ = Ei(/t' k = 1, 2, 3, 4 (C.2)

Now the normalized moment _ay be defined in terms of certain auxiliary

functions

= _I(32)
Inn nm

' tag' ""+'+ I(41) + - _I )
nm (t_ + 1)(n + I)

•m+l • .n+1 :n+l
+,% rE;4 - _3 )]

(c.3)

The auxiliary function I_ 2) is as follows:

If In32l > 1:

I(32) 1 r"n+1.m+1,2
nm =,m + l)(n + l) L_ n J3

l l [_n+2_m]23
" (n + l)(n + 2) m32

r_ __ 1 [_n+3_-112

+ Tn + l){n + 2){n + 3) mT32
(C.4)

C-l
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_(m - I)

(n + l)(n + ?)(n + _)(n + 4)

m(m - 1)(m - 2)

+ (n + l)(n + P)(n + 3)(n '*_)(n + 5)
l _n+5-m-3T [ _ ]3

m(m - l)(m - 2)(m - 3)

(n + 1)(n + 2)(n + 3)(n + 4)(n + 5)(n + G)
1 _n+6-m-4 2T[ n ]3

If Im321 _ I:

T(32)
nm : Tm + l}(m + Z) m32 [_n_.m+2]

" {m+ l){m + 2){m + 3) 2 [_n-l_m+3123

n(n- l)

{m + l)(m + 2){m + 3}(m + 4)
m_2 [l_ n-2n'm+4]_

_ n(n- l)(n- 27 4 ;p,-(m + i)(m + 2)(n + 3)(m + 4)(m + 5) m32 [_n-3 5]

n(n- l)(n- 2)(n - 3) 5 _r1++ (m + 1)(m + 2)(m + 3)(m + 4)(m + 5)(m + 6) m32 [_n-4 6]

(c.5)

t_ere the bracketed symbols are defined by

(The superscripts in the above equations denote simple po_mrs of the quantities

except for the bracketed double superscript (32), which denotes the side of the
I(32)

quadrilateral.) It is clear from the above that the calculation of nn

requires m + 2 terms of Eq. (C.4) or n + 1 terms of Eq. (C.5). The calculation

is simply terminated at this number of tems. The auxiliary function l(41)nm

is obtained from the above by an obvious substitution of subscripts.



APPENDIXD

NEAR-FIELD SOURCE FORMULAS

If ro/t < P2' the near field formulas are used to compute induced velocities.

The calculation starts with the element coordinates x, y, z of the field point

and the geometric quantities associated with the element that are discussed in

Section 2.3.

Preliminary quantities to be calculated are:

•' _k)2 )2 2rk = /(x- + (y- nk + z ,

x-_ k y-n k

a_ = rk Bk rk

Z

Yk =rkk

k = 1,2,3,4

CD.I)

k = 1,2,3,4

p_32) = m32[z 2 + (y _ nk)2] _ (x - _k)(Y- qk),

p_41) = m41[z 2 + (y_ nk )2] _ {x - _k)(y- nk),

k=3or2

(D.2)

k=4orl

_he basic functions are

r + r - dmn
L(mn) _ m n

- log rm+ rn + dmn
m,n consecutive, i.e., mn = 12, 32, 34 or 41

(D.3)

and

p_32 )

T_32) : tan "I [Z-_k ],

p_41 )

T_41) : tan -I [_1,

k=3or2

(D.4)

k=4orl

Also needed are derivatives of the T's and L'So The derivatives of T_ 32) are

BT_32) z(r_Bk ÷ p_32)_ k)

_x Dk{32)

D-l2274H



(32
z[(2m32B L - _k)rk - Pk )Bk]

D_3z)

 T 32) 2 +zykl2m32z rF - p

_z - - D_32 )

k=3or? (D._)

D_32) 2 2 _ (32)]?: z r k + Lpk

There is an analogous set of formulas for the derivatives of T_ 41).

The derivatives of L(mn) are

_L(mn)
_-_ - Dmn(_m + _n ),

_L(mn) _mn)
_y = Dmn(flm + 6n), _ : Dmn(Ym + yn ),

2%n
= - Z

Om (rm + rn)2 - dmn

(D.6)

mn = 12, 32, 34, 41

rh_ flat-panel constant-source velocities are

_(0) l L(32) 1 (41)
x : " 3-_2 + 4_]L

V(0) : _ L(12) + L(34) m32 L(32) m41 L(41)
y

(D.7)

Z

Referring again to Appendix A, it can be seen that the integrals Imnp of Eq.

(A.30) are source potentials if p = l and, when multiplied by z, are dipole

potentials if p = 3. Specifically if @mn represents the potential of a

dipole distribution _ : _mnn on the panel, then

Cmn : Zlmn3
(D.8)

'4H



It turns out that the higher-order source tems for a panel are expressible in

terms of derivatives of the dipole potentials, Eq. (D.8), and the derivatives

of the source velocities, Eq. (D.7).

Only the derivatives of Vx and Vy are needed (since Vz = _00' its derivatives

are exactly a potential derivative). The derivatives of Vx and Vy are

BV_O) (32) (41)I BL l BL

_x - _2 _x +T_41 _x

Bv(o)
x I BL(32) 1 BL(41)

By _32 By +- _41 By

BV_O) l BL(32) 1 BL(41)

Bz $32 Bz += - $41 Bz

@v(O)y _ _)L(12) @l..(34) m32 BL(32) m41 BL (41)

_x _x + B---R--+_ Bx _ Bx

(D.9)

_V__= BL(12) BL(34) m32 _(32) m41 BL(41)

By By + B--_-+_32 By _ By

"V(0) = BL(12) BL(34) m32 BL(32)

Bz Bz + B"--"i-- + _ Bz

m41 BL(41)

Bz

Now the potential derivatives are as follows.

B¢O0 @T_32) BT_32) _T_41)

_-_ - _-_ + _-_ + ---_x

+ ÷
By By By By By

2¢00 BT_32) BT_32)
- +

Bz _z Bz
_÷

(41) (41)
BTI BT4

_Z _)Z

(D.IO)
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av(°) a_oo
a¢01 y + y

ax - z _--_----- ,9x

a¢oI aV_o )
Z

ay By

a_Ol aV_°)
Z3z _z

B¢O0

+ y_+ Vz(sourCe)

B¢O0

+ Y a--T- Vy(sOurce)

(D.ll)

a¢lO aV_O) a¢O0

ax = - z a---_+ x-_-+ Vz(sOurce)

(o) a¢_o°a¢l0 aVx
- Z_+ X--

By By By

a¢1o 3v (°) a(l,o0
x - Vx(sOurce)--_=- z_+x--,a- _

(D.12)

Now define

r3 - r2 + r] - r4 + m32 (32)

J11 = ., S_ 2 Sz_I ST32 (x- m32Y- b32)L

m41 )

- _ (x - m41Y - b41)L(41
(D.13)

aJ1.1_ e3 - a2 m32 (32)

ax $22 + _-"3"-L

al - _4 m41 (41)
+ L

m32
+ _-'3"-(x - m32Y - b32)

aL(32)

_X

m41 aL(41)

- S-_4] (x - m41Y - b41) ax

aJ11 _ B3 - B2 m_2 L(32)

'_Y $22 q2

+ m32 (x - b32)

mB2Y -

aL (32)

BI - B4 m21 (41) m41 (x - m41Y - b41) aL(41)

(D.14)
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_all Y3 - Y2

_-_ S_2

m32 BL(32)

+ sT2 (x - m32Y - b32) BZ

YI - Y4

+ $21

_ m41 BL(41)

ST4] (x - m41Y " b41) Bz

Using the above

_JI] B¢01 2¢10 2¢00V Q) = - [z -T+ x-TR-+ Y-T- xy Bx _ zV_°) ]

aJ11 B¢oi a¢lo a_oo _v(O)]V Q) = - [z--_ + X-_ ÷ y By xy ay z x

BJ11 B_Ol B*1o B*ooV Q) = - [z--_+ x-_T+ y-_- xy-_+ J11 ]

Also define

r2 - r3 r4 - rl + I - L(32)

(D.15)

_1

s4TI x - m41Y - b41}L(41)

BH02 _ m32 + l L(32 ) + (x - m32Y - b32) _L(32)

Bx $3T2 (a2 - _3 ) S-_32 S332 Bx

+ m41 (a 4 _ o=1) _ _ (41) (x - m41Y - b41) BL(41)
S471 $31 L S_ 1 Bx

BH02

_y
w= m32

S32---_(B2-B 3'
m32 L(32 ) + (x - m3?Y - b32) BL(32)

S32 S_2 By

m41 m41 L(41)

+$421 (B4- BI) + S4T] +

(x - m41Y - b41) ;)i.(41)

$431 By

(D.16)

(D.17)
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all02= m32

az $3T2 (Y2 - Y3 )

+ m41 (Y4 - Yl )

(x - m32Y - b32) aL(32)

S3 az
32

(x - m41Y - b41) aL(4l)

$431 az

Using the above

V(xR)

all02
•(R) - [z + 2y_ -
Vy : _'_

all02
V_R) = - [z

a¢oo
BH02 a(bOl (y2 + z2) ]

=- [z--_k--+ 2Y a---E-"

a¢ol (y2 + z 2) a4b0
By aY

Finally, define

.(o)
ZVy ]

a¢Ol a¢O0 2zv_O)]+ 2y--_- (y2 + z2) --z_-

= - zV_O)J02 H02

= ¢(o)
J20 - H02

(D.18)

(D.19)

aJ20

ax
__ V(0) aH02 M20 _ V (0) aH02

x ax ' a---y-= y ay

BJ20 _ _V(0) aH02
az z az •

_here

¢(0) = (y _ n1)L(12)
(x - E2) - m32(Y - n2)

L(32)

$32

- (y - n3)L(34)

(x- E4) - m41(Y- n4)
L(41)

$41

Using the above

_J20 a¢lO _ 2 a¢00
V(P) = - Fz --T&,x- + ?x ;_x x _x
x

2ZV(x°) l

(D.20)

(O.Z])
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-" _,

_J a¢1o a¢oo
v (P) - [z 20 2 ]
y = --_+ 2x _--7-- x _---_-

aJ20 a@lO 2 )6OO
(P) [z + 2x x + ]Vz = - _ _ - _ J20

v(Ix) xv_O)x = " J20

v(IX) = xV_)rn _ Jly l

v(Ix)xv_O)zv_O)
Z = -

V(x','=
v(iy) (o)
Y = yVy - Jo2

(ly) yv_O) zv(O)VZ = -

(D.22)

(D.Z2)

(D.23)
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APPENDIXE

INTERMEDIATE-FIELD SOURCE FORMULAS

If

Pl > ro/t > P2
(E.l)

the intermediate-field formulas are used.

First define direction cosines

xe=-- B =L, y=z__
ro' ro ro

(E.Z)

Next define certain "derivative functions" as follows:

First Order:

Ux = -a, Uy = -_, Uz = -y
(E.3)

Second Order:

Uxx = 3. 2 - 1, Uxy

Uxz = 3ay, Uyz

Uyy = 362- 1

Uzz = 3 2 - 1

(E.4)

Third Order:

Uxx x = 3a(3 - 5a2), Uxxy

Uxyy = 3e(l - 562), Uxy z

Uyyy = 3B(3 - 562), Uyyz

= 3B(I - 5_2),

= -15aBX,

, 562)= ._11 -

UXXZ

U
XZZ

Uyzz

: 3y(1 - 52)

: 3a(1 - 5y2)
(E.5)

: 36(I - 5y2)

Fourth Order:

UXXXX =
9 - 90_2 + lO 5a4

Uxxxy = 15aB(7_ 2 - 3)

2274H E-I



u = 15ay(7a 2 - 3)
XXXZ

Uxxyy = 3 - 15(a2 + B2) + 105a262

Uxxyz-- 15By(7a 2 - I)

: 2 ,os /
Uxxzz 3 - 15(a2 + Y ) +

(E.6)

Uxyyy = 15a6(762 - 3)

Uxyy z : 15ay(762 - I)

Uxyzz : 15aB(7y 2 - 1)

Uyyyy = 9 - 9062 + 10564

Uyyy z = 156y(762 - 3)

Uyyzz = 3 - 15(62 + y2) + 10562y2

The source velocity components are:

t2 1 1 (t) 2
= _ {'looUx + (_-)[llOUxx " 2 lOlUxy] - 2 r [120Uxxx ÷ 2111Uxxy

r0 o o

+ 102Uxyy]}

v(O, t2 + (r_'[II _ (r_'2[I= -'Z {-lOOUy OUxy + IOIUyy ] - 20Uxxy
ro

+ 211lUxyy

+ 102Uyyy]}

{E.7)

v_O) t2 t u ½2= -_ {'IOOUz + (_-)[I10 xz + I01Uyz ] - _ ( ) [I20Uxxz + 2111Uxyz
r 0 o

+ lozUyyz]}
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Far-Field Ist Order 2nd Order

V_Q ) t4= -3_ (IllUxz
r
0

- (r_)[121Uxx z

v(Q) t4 _oy = -3r {IllUyz - ( )[121Uxy z

ro

v(Q ) t4 t
= I {IllUzz - (r-')[I21Uxzzz

ro
o

2

+z12Uxyz]+½ (_oItz31"xxxz+21z2.xxyz

t 2

+ II2Uyyz] + ½ (_'-)[13]Uxxy z + 2122Uxyy z
0

t 2

+ ll2Uyzz] + ½ (_) [131Uxxzz + 2122Uxyzz
0

+ ll3Uxyyz]}

+ ll3Uyyyz]}

(E.S)

+ ll3Uyyzz]}

v_R) t4 Lo 2= -_r (I02Uxz - (rt--)[II2Uxxz + I03Uxy z] + _ ( ) [I22Uxxxz + 2Ii3Uxxy z
r 0 o

+ I04Uxyyz]}

V(yR) t4 t r_ 2= _ {I02Uyz - (_-_o)[l]2Uxyz+ I03Uyy z] + _ ( ) [122Uxxy z + 2II3Uxyy z + 104uyyyz]}
r o

(E.9)

t 2
.(R_t4 (t)t + +_(_-){z +2,Vz = --C[ {I02Uzz - I12Uxzz I03Uyzz] 22Uxxzz 13Uxyzz

ro o o
+ I04Uyyzz]}

VxP)" = t4 _ (__)+ 1 L [140Uxxx z + 2131Uxxy z + I22Uxyyz] }(I20Uxz [130Uxxz + 121Uxyz ] + Z (r)2

r0 0 0

v(P) t4 t 2
= -_r {120Uyz - (_--)[I30Uxyz + I21Uyyz] + _ (F-) [I40Uxxyz + 213lUxyyz + 122Uyyyz])Y

ro o o
(E.IO)

(P) = t4 r_
Vz _ {I20Uzz - ( ) [I30Uxz z

2

+z21Uyz,1+_ (½)EZ4oUxx:,+ 213lUxyzz + 122Uyyzz] }

(Ix) t3 _ t t 2
Vx =--_ {lloUx (F-)[12OUxx + IllUxy] + ½ (_-) [130Uxx x + 212lUxxy + ll2Uxyy]}

r 0 0 0
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(Ix)
Vy

v(Ix)
Z

-4-,t, ., 4 [ 130Uxxy-'--'Z {IloUy 20Uxy llUyy] o
r ° o

t3 - (-_o)[ 120Uxz
= _ {110Uz

t 2

+ IllUy z] + _ (F -) [I30Uxxz
0

v(lY)
X

2

= --2-{IOlUx lUxx + I02Uxy] +

ro 0 0

[121Uxxx

V(yly) t3 . (t)[I += -2- {IolUy llUxy I02Uyy]
ro o

2

(_-)t'2i"xxy
0

t 2

v_lY) = _._ {I01Uz - (b)[i11Uxz + i02Uyz] + 1 (___)[i21Uxxz

r 0 o o

+ 2121Uxyy

+ 2121Uxy z

+ 2112Uxxy

+ 2112Uxyy

+ 2112Uxyz

+ Ii2Uyyy]}

(E.II)

+ l!2Uyyz ]}

+ I03Uxyy]}

+ I03Uyyy]}

(E.12)

+ 103U_z ]}

:' E-4• 2274H



APPENDIX F

FAR-FIELD SOURCE FORI_LAS

As usual _ denotes the unit normal vector to a projected flat panel and TE

and _E are, respectively, unit vectors along the x- and y-axis of the panel

coordinate syst3m (Appendix B). Define r+o as the vector from the origin of

panel coordinates to the point where velocity is being evaluated and r o as

its magnitude. Certain auxiliary vectors are needed:

n . r o r o

_-- - t3 (--_)_- _]

• _

_a--- [3 (._Fo )g

(F.1)

The far-field expressions for the source velocities are

tZlo0 +_o) _- ro
r2o ro

(F.2)

t 4

_(P) = _ _ I20_

r o

t4

VAQ) = __ ÷
r_ IIID

t4

(F.3)
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t3

_(lx) _ _o t4 l_j]
'lo _'_ ['z0Bi+ 'I

t3 ;o t 4

v(ly) =_ iol _o - 7 [ I1l_i + I°21)j]
0 0

(F.4)

The fact that three auxiliary vectors (F.I) are required means that in effect

a transformation into panel coordinates has been performed. It appears to be

somewhat faster computationally to use the vector far-field forms above rather

than simply truncate the intermediate field formulas in panel coordinates.

2274H F-2



APPENDIX G

SOME SPECIAL NEAR-FIELD FORMULAS

The near-field formlas of Appendices D and I can have numerical difficulties

under certain circumstances. Some of these are inherent in the formulas, nile

others are due to extremes in panel dimensions - particularly very long thin

panels. Special formulas have been developed to deal with these situations.

"Small Logs" (Lon 9 Thin Panels)

3

First con_ider side 32. If

r3 + r2 - d32

r3 +r 2 +d3'_ < _3 = IO'3

Then define

e2 = h_2 + z2

1 +_2

d 3 =
m32 1

,,.(x- _3) + (y-n 3)

d2 = d32 - d3

In the argument of the logarithm t(32) set

l (l_+l) e2 . I (1+ I) E4
r3 + r2- d32= 2 d3 d2 d_ d)

For Side 41

A similar procedure is used for rI + r4 - d41. Define

c2 - h_l + z2

I + m_l

(G.l)

(G.2)

(G.3)

(G.4)

2274H G-1



d4 =
m41

,_+ m_l

(x- C4) + 1 (y_ n3 )

d 1 = d41 - d 4

Then if

r4 + rI - d41

r4 + rI + c_ < c3

set

1 1 I _e2 I I 1 )e4

r4 + rl - d41 = _ (_4 + _I' " I_ (d-_4+

The formulas are slightly different for the other two sides. If

rI + r2 - d12

rI + r2 + d12
< ¢3

define

e2 = (y- nl)2 + z2

dI = x- I_I

d2 = d12 - dI

and set

l (1+1) 2 I (1 ]__) 4

Finally, if

r3 + r4 - d34

r3 + r4 + d34
< c3

define

2 n3)2c = (y - + z2

d4 = (x - K4)

(G.4)

(G.5)

(G.6)

(G.7)

(G.8)

(G.9)

(G.lO)

(G.11)
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and set

d3 = d34 - d4

1 I I )E2 I (I + 1_._)E4 (G.12)

"T-Derivatives"

The individual T-derivatives in Appendix D become indeterminate if the point

(x,y,z) is on the extension of a side of the panel. The "fix" of Ref. 5 is

designed to remedy this, but it is inadequate for two reasons if the panels

are long enough. One is that if the point is near the side itself, the fix is

inappropriate. The other is that the criterion is too stringent if the point

is indeed near the side extension. The following appears to be a reasonable

"fix of the fix."

1. Slanted sides

If (y - nl)(y - n3) < O, skip this part. Otherwise calculate

c_2= h_2+ z2

¢4ZI = h21+ z2

If ¢_2/y2_ < 0.0001, use

aT_ 32) aT_ 32) aT_ 32) aT_ 32)
4- = 4-

i)x _x @y _Y
=0

BT_32) BT_32) m32
TE + _z -

A 4-m_2

If o.oool,use

I 1

(lY - n3l - IY - rill

141) (41) (141)@T PT4 ;_T
3X + 3X =-T

(G.13)

(G.14)

(G.15)
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o

 141) °41 I I

(lY - nl'r" ly _n3/)

Parallel sides

If h32h41 < 0, skip this part. Otherwise calculate

2 )2 2
el2 = (h - nI + z

If

c_4 = (y- n3)2 + z2

2
E12

(x - (1; l + _2)/2}
.2< 0.0001,

(G.16)

(G.17)

use

If

aT_ 32) aT141) aT_ 32)

ax + ax ay

aT_32) aT_41)

az az

_T141)
_*

ay
=o

"41 m32
Ix- ;i[-1x- [2(

2

¢34 -- < 0.0001,

{x - (_3 ÷ E4)/2} 2

(G.18)

(G.19)

use

+ - +
ax ax By ay

-0

aT_32 )

az

aT_41 ) m32 m41

=-_- lx- C41

(G.20)
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Edge Vortex Formulas Near Extended Line

These are needed for s_ll values of

q2 = (y_ n])2 + z2

If

2

Lx - E1 or 2 j2

< 2.5 • I0"2

use the following formula for Jon(F)

sgn(x - El ) I I

Jon (F) = n - I {L (E2 - x)n-I (El - x)n-I ]

. _q2 L l ]
(_2 - x)n+l (El - x)n_] j}

(G.21)

(G.22)

(G.23)

"Simpson's Rule"

Define R as the distance of (x,y,z) from the closest point of the line vortex

and d as the length of the line vortex. Then if

R/d > 10 (G.24)

do not use the recursion formulas of Appendix I, but calculate the Jmn by

the three-point Simpson's ru]e

E2 E2 - E1
Jmn = _ F(E)dE = 6

E1

_1 + _2) F (E,2}jLF(_ 1) + 4F (- 2 +
(G.25)
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APPENDIXH

CALCULATIONOFVORTICITYINDUCEDVELOCITIESIN TERMSOF
SOURCEINDUCEDVELOCITIES

The calculation of the vorticity influences can be made much more efficient by

expressing them in terms of the corresponding source influence, which of

course, must be calculated in any event. The use of this procedure was put

forward in Ref. 21. The portion of the theory that is needed for the present

purpose is quite easy to state.

Suppose there is a variable source density o on a portion of a plane or

curved surface S. The velocity due to this at a point (x,y,z) is

(source) = Jl _ mS

.¢,where r and r have their usual meanings.

on S of strength

(H.I)

If there is a vorticity distribution

(H.Z)

The Biot-Savart law gives the resulting induced velocity as

f (vorticity) : _ t x r _xlS (H.3)
S r

Then if ( is a constant vector and if _ has the same spatial variation as

o, the velocity due to the vorticity distribution may be expressed in terms

of the velocity due to the source distribution _s

f (vorticity) = ( x _ (source)
(H.4)

since _ can be resolved into components, each of which has a constant

direction, the restriction to a constant { is not serious. Although the above

results apply to a curved surface S, it is far simpler to apply to a flat

surface. In the present context the above is applied to the flat projected

pane 1.

2274H H-I



Figure 8 illustrates the projection of a curved panel S on the surface of a

Flat panel A in the tangent plane. In particular, Figure 8 illustrates _ from

a point of S and the vector _f from a point of the projected flat panel to

the point (x,y,z). Evidently

-_ t _r

rf = (x - _)1e + (Y - n)3e + z_e
(H.5)

where _e' _e' _e are unit vectors along the axes of the panel coordinate

system. As in Appendix A, the vertical distance _ between the curved panel

and its projection is approximated by its leading term _2' which represents a

surface of second degree

C2 = p_2 + 2Q_n + Rn2
(H.6)

The aim is to obtain a consistent two-termexpansion of Eq. (H.3) and express

the results in terms of source effects. From Eq. (2.6.7) it is seen that a

two-termexpansion of the vector vorticity distribution is

: _o + _I (H.7)

where

_0 = _y_e - _x_e
(H.8)

is zero order and

_l : 2(Pxy_ + Pyyn)ie - 2(_x_ + _xYn)j+e + 2[-(Q_ + Rn)_ + (P_ + Qn)_y]k e
(H.9)

is first order. The constants px,Uxx, etc. are the derivatives of the equiv-

alent dipole distribution as given by Eq. (2.6.4). From Fig. 8 it can be seen that

; : ;f - (H.lO)

Thus a two-term expansion ot the vel- ;ty at (x,y,z) due to the vorticity on

the p_nel is

÷ ÷ _) X r_

_xr _ o

T

"S: (
¢2 _I x _f _ _o x _e

(I+ 3Zr-_f ) + r_ f _2 r_f } dA

(H.II)
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_2 _e _l x rf

_o x _ [ _f (l + 3z ) . _]dA + f_----13---dA
= _ _ A rfA

By taking the gradient of the ¢(0) and @(c) terms of the source

expansion in Eqs. (A.33) and (_.,4) of Appendix A, it can be seen that the

integral multiplying _o above is just the sum of superscript 0 and c

source terms for unit source density. Specifically this combination is the

velocity

(, = _(0) + [p((P) + 20_ (0) + R( (R)] (H.12)

This same combination appears in Eqs. (2.4.1). To analyze the last term of

Eq. (H.11), collect terms in Eq. (H.9) to obtain

+ _qx Y)_I = 2( + _ (H.13)

where the vectors

* _ + (P - qpx)[e
qx : PxY le " Pxx3e _Y (H.14)

are constants in the integration. The integrals that result from using Eq.

(H.13) in the last term of Eq. (H.ll) are the velocities due to linearly

varying source densities in the { and n directions having unit slope, i.e.

;(Ix) and ;fly) of Eq. (2.4.1).

Thus the velocity due to vorticity on the panel may be expressed in terms of

source velocities as follows

It is interesting to note that Eq. (H.15) can be evaluated directly in refer-

ence coordinates after the relevant source velocities have been calculated and

put into this system. With regard to the velocities due to the vorticity, this

not only means that no transformations between panel and reference coordinates

are required, but it also n_ans that the question of far-field calculation need

never arise. If the source velocities have been computed by far-field

H-3
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formulas, they simply are used in Eq. (H.15), so that in effect the vorticity

calculation uses the source far-field procedure. Tne present code takes

advantage of the second of these facts, the use of far-field source formulas,

but performs the calculation in panel coordinates.

The implementation in panel coordinates proceeds as follows.

Define

hi_
n3 B1 = w c(nl + n3)

_I : w

nI hs

a2 =_-- B2 = -_-+ c(n I + n3)

(H.16)

then

0
x 7' --BF(Ie [-Vz- l] + ]e [-VzB1] + ke [BIVy + _IVx ]}

* [-Vz°=2] + "_e ['Vz62 ] * _e [62Vy + °2Vx]}+ BS{ I e

(H.17)

Define

1
61 ='-_ _I = c

1 e1 = -c62 =-_" _

(H.18)

then

qx x ((Ix) = BF (Te [v(Ix)(PBI - Q_l ) +Y

+ _e[V;lX)61 ]}

-_ r,,(Ix) (lx). ]
3eLVx (PBl - Q_l ) - Vz oI

(H.19)

-)_ r,,(lx) V(Ix)_ "
rv(Ix)(pl3 2 . qa2) + JeL. x (PB2 - qo_) - z °2J+ BS (1 e - y

+ _e[V;lX)62 ] }
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qy (ly) x (lY)(QB1 - Ra 1)x _(ly) = BF {1 e [_Vz _1 - Vy

v(lY)_ 1
+ _e LrV(ly)cy 1 + "x _1_

+ ]e[V(xlY)(Qfl-R_h) - v(ly)_1]

(H.20)

+ BS {ie_ L-.zrv(IY)R_2 " Vy(Iy)(QB2 - R_) + ]e[V(xIY)(QB2 - Ra2) - "z"(IY)c2J"

+ Cr,eLr V(lY)_y 2 + V(IY) ($2]}x

22741! II-5



APPENDIX !

FORMULASFOR THE EFFECT OF NEAR-FIELD LINE VORTEX

ALONG A STREAFIWISE EDGE OF A PANEL

Derivation of the Influence of an Edge Vortex

The equation of the curved panel is Eq. (H.6). For definiteness consider the

case when the edge in question lies in the plane n = n1, i.e. the first

N-line (Fig. 3). The modifications for the case of the second N-line are

obvious. Thus the curve c along which the vortex lies is

¢ = ¢(¢) = p_2 + 2QCn I + Rn_
(z.1)

The unit vector along this curve is

/TT 
.. -h (1.2)

[ 1e + T3 el

where
T = 2(PE ÷ Qnl)

The velocity due to the vortex is

x _pds
_r = I --'_rc

where p is the edge value of the equivalent dipole strength. Arc length

along the curve is related to distance in the tangent plane by

ds = V/_ d_

Thus with r expressed in panel coordinates (Fig. 8)

(t x r)ds = {[ 0 - T(y- nI) ITe

[ z + T(X - E) + {]_e

[(y - nl) + 0 ]Ee}dE

(i.3)

(z.4}

(z .5)

(z.6)
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where the terms in the first column of Eq. (I.6) are first order, and those in

the second column are second order. This expression is exact except for the

approximation { = {2"

As shown in Appendix A, a three-term expansion of I/r3 is

1 1 [I + 3c I + 3(c_ ÷ c2)]

where rf is distance from a point of the flat tangent panel and where

z{2

ci =T

(1.7)

(I.8)

Along the N-line the equivalent dtpole strength varies linearly

p = B(h + {) (I.9)

where h is the total arc length along the N-line up to the n-axis of panel

coordinates (see Section 9.2 of Ref. 2), and B is the unknown value of vortic-

ity that is determined from the Kutta condition. The funda_ntal flow is

obtained by setting B equal to unity in Eq. (I.9). Multiplying the above

expansions gives the components of the vortex velocity as follows

: 1
Vrx El _ {0 - [T(y - nl)h] - [T(y - nl)(3Clh + _)]}d_

: IE2 ]__ (-zh + [-z(3Clh + E) + h(T(x 1" E)I + _2 )]

Vry E1 r_
(I.lO)

+ [-z{3(_ + c2)h + 3c1E} + (3clh + E)(T(x - E) + _2)]}dE

= (y _ hi ) IE2 1_ [3Clh + E] + [3(c_ + c2)h + 3ClE]}dE
Vrz _1 r_ {h +

The integrals in Eq. (I.10) have the form
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(I.1])

Once the iOn and Jln have been calculated the others are calculated from

the recursion formulas

2 (I.I2)
Jmn = J(m-2)(n-2) + 2XJ(m-l)n - p J(m-2)n

where

p2 = x2 + (y _ nl)2 + z2 (I.13)

The required iOn and Jln are

r I + r 2 + d12 =_L (12)
J01 = log rl + r2 _ dl 2

Jll = r2 " rl + XJol

1 E2 - x _1 " x

J03 = q-"Z[ "r2 r 1

1 1

J13 = v'1 r2 + xj03

] (I.14)

1 E2 " x El - x

J05 =_q2 [---_-r 2 r_ + 2j03]

1 _ _ ) + xJ05
J15-" _ (r'_2 rl

1 E2 - x El - x

= + 4J05 ]

J17 = - 1 (l__ _ I__ x,o,
where

q2 = (y. nl)2 + z 2 (I.15)
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and where r 1 and r 2 are, respectively, distances of the point (x,y,z) from

the ends of the interval, i.e.,

2 2 2 z2 (I 16)
rk = (x - _k) + (Y - nl) +

In terms of certain auxiliary functions, Fn, the velocity components of Eq.

(I.lO) are

VFx = -(y - nl)[hF l + F 5]

Vry = -zhJ03 + [-zF 2 + hF3] - z[3hF 4 + F 6] + F7

Vrx = +(y - nl)[hJ03 + F2 + 3hF4 + F6]

(i.17)

The auxiliary functions for on-body panels are:

F 1 = 2PJ13 + 2QnlJ03

F2 = 3zh[PJ25 + 2QnlJl5 ÷ Rn_J05] + {313}

F 3 = 2PxJ13 + 2QnlxJ03 - PJ23 + Rn_J03

F4 =_z2Q7-½Q5

Qj = [p2J4j + 4PQnlJ3j + (2PR + 4Q2)n_J2j + 4QRn_JIj

F5 = 6zh[p2J35 + 3PQnlJ25 + PRn_Jl5

F6 = {3z[PJ35 + 2QnlJ25 + Rn_Jl5]}

F7 = 3zh[-p2J45

+

+ 2Q2n Jls+QRn3JOS]

R2_JOj] (I.lB)

+ {2PJ23 + 2QnlJl3}

+ (2p2x _ 2PQnl)J35 + 6PQxnlJz 5 + (4Q2xn_ + 2PRx_ + 2QRn_)J15

+ (2QRxn_ + R2n41}J05] + {-PJ33 + 2PxJ23 + (2QXnl + Rn_}Jl3}

The formulas for wake panels are obtained from Eq. (1.18) be deleting all terms

in {} and replacing h by L (total).



For the semi-inflnite last wake additional changes are made to the formulas

(1.14) for the Jmn corresponding to

_2 ÷ = r2 _ = _2/r2 ÷ I (I.19)

Furthermore, P and Q are set equal to zero.
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APPENDIX J

FAR-FIELD EDGE VORTEX FORMULAS

Compute

If

use

+ _2) ]2 nl ]2r2 Ix ( l 2= - Z +[y- +z

(_2- _I)2/r2

Vrx = -(y - nl)Tol

< 0.OOl,

Vry [-z + TO (x - _l +: Z _2.)+ _o]i

Vrz = (y- nI)l

(J.l)

(J.Z)

where

I _

- I_1 l_1 + I_2

r3 (h +----T-- )

TO = 2[P Z + qnl] (J.3)

_I + _2.)2 _I + _2 )
_o = (P 2 + 2Qnl ( 2 + Rn2

For the second N-line the obvious quantities are replaced by the corresponding

ones. The above equations replace the elaborate formulas of Appendix I.

7
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APPENDIXK

PARABOLIC CHORDWISE VORTICITY

The assumption of constant vorticity around a wing section (linear variation

of the underlying dipole strength) can lead to numerical difficulties on cer-

tain wings with very thin trailing edges. Accordingly, a second chor_ise

variation option is required. The important consideration is to have the

"bound" vorticity strength approach zero at the trailing edge on both upper and

lower wing surfaces. This is accomplished by a quadratic global variation of

vorticity as a function of arc length along an N-line. While only two global

chordwise variations have been incorporated into the present method, many such

variations are possible. As will be seen below, the required modifications to

the program are quite minor. This flexibility is due to the use of vorticity

as an auxiliary singularity.

To implement the parabolic vorttcity option, the linear variation of the under-

lying dipole strength along an N-line is replaced by a cubic variation having

zero derivative at the upper and lower trailing edge. Specifically,

2

s - 2 [L--_] } (K.I)_=Bs (3L--TT6_TFF

where s is arc length along the N-line. The above is a global variation. The

variation over an individual panel can be no higher a degree than quadratic,

and in the present method has been taken as linear. It is assumed that the

underlying dipole distribution on a panel agrees with Eq. (K.I) at the corners

of the penel and varies linearly in between. Thus, the overall behavior is

that of an inscribed-polygon approximation to Eq. (K.l).

For an individual panel the arc length measured along an N-line from the

trailing edge to the lower corner of the panel is hF + _l or hS + _4 while the

arc length associated with the upper corner is hF + _2 or hS + _3" The linear

function that agrees with Eq. (K.I) at these two values of arc length is

= B(H + It)
(K.2)
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where on the two N-lines the constants H and I have the values

3 (h2 . _l_2) _ Z [h_ - _]_2(3hr+ _1+ _2)]
HF = L F (total) [L F (total)] _

3 _2) .
IF = LF (total) (2hF - _l+

2 [3h2 + 3hF(_l + _2 )

[LF (total)]2

+ _] + E2+ EIE2]
(K.3)

3 (h_ - E3E4 ) - 2 [h3 - E3E4(3hs + _3 + E4 )]
HS = LS {total) [LS (total)]Z

3 C4) _
IS = LS (total) I (2hS - _3+

2 [3h_ + 3hs(E 3 + E4)
[L S (total)] _

+ _3 + _4 + E3_4 ]

where all symbols have the same meaning as in Section Z.6.1. Thus the

quadratic form (Z.6.9) for the variation of dipole strength over a panel is

replaced by

/ BSHSn1 - BFHFn3
BFIF/- BSIS BFH F - BsHS BsIsnl - BFIFn3 _ +

P= w _q+ w q÷ W W

+ C(BF _ BS)(n . n3)(n _ nl ) (K.4)

The dipole derivative formulas of Section 2.6.1 are modified in an obvious

way, specifically

a.

b.

c •

Term_ containing c are not changed.

In terms containing hF or h S these quantities are replaced by

HF or HS, respectively.

All other terms are multiplied by IF or IS as appropriate.
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The wake formulas are unchanged except for c. In the constant chordwise

vorticity option, the parameter c is nonzero on wake panels if the "piecewise

linear" spanwise variation of vorticity is used. k!owever, if the parabolic

chordwise vorticity option is used, c is taken as z_ro on all panels.

The near-field edge-vortex formulas (Appendix I) are modified as follows:

Fl = unchanged

F2 = replace hF by HF

multiply J13 by IF

F 3 = unchanged

F4 = unchanged (K.5)

F5 = Replace hF by HF

multiply [2PJ23 + 2QnlJl3 ] by IF

F6 = muir ply entire term by IF

F7 = replace hF by HF

multiply ['PJ33 + 2PxJ23 + (2Qx_l + Rn_)J13] by IF

The wake formulas are unchanged. Replace H by LF(tOt.) and set I = O.

Note that the terms multiplied by I are exactly the terms neglected in the

wake.

In the far field (Appendix J), the only change is that I becomes

dF _l + _2

I r_ (HF + 2 IF) (K.6)
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APPENDIX L

B DERIVATIVES AT SECTION EDGES

If the k-th strip is last in a section, the square bracket in Eq. (2.6.30) of

Section 2.6.5 is replaced by

[DBk_2 + EBk_l + FBk]
(L.l)

wk (Wk-l + wk )
D - Wk_l + I/2{Wk_2 + Wk ) Wk_2 + Wk_1

Wk_ l + I/2(Wk.2 + wk)

E = -4w k -('Wk-2+ Wk-l)(Wk-1 + Wk)
(L.2)

_k-2 + 3wk-I + 2Wk

F = wk (Wk_l + Wk)lWk_l + i/2(Wk.2 + Wk)]

If the k-th strip is first in a section, the square bracket is replaced by

[DBk + EBk+l + FBk+ 2]
(L.3)

2wk + 3Wk+1 + Wk+ 2

D = -wk {wk + Wk+l)[Wk+l + llZ(Wk + Wk+2)]

Wk+ I + l12(wk + Wk+2)

E = 4wk {wk +Wk+l)(Wk+ 1 + Wk+2)

wk wk + Wk÷ I )
= (Wk+lWk+ l + I/2(wk + Wk+2) + Wk+ 2

If a section has only one strip, eliminate the square bracket, i.e.

(L.4)

D = E = F = 0 (L.S)

If the section has two strios, use

D=O
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2wk
E=

Wk+ l + wk

I:" = -E

for the first strip, and

2wk
D:

wk + Wk_ 1

E -- -D

F=O

for the second strip.

(L.6)

(L.7)
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APPENDIX M

CONVERGENCE ACCELERATION SCHEME

After each iteration, a convergence acceleration procedure is invoked in which

a new solution is defined in terms of a linear combination of the previous

solutions. This appendix will give the details of the calculation of the

required linear combination.

Let XO, XI, ... Xk and RESO, RES l, ... RESk be k + 1 successive approximations,

and their corresponding residual vectors. Since there are N+L unknowns to be

solved for, we define the (N+L) x (k+l) matrix whose columns are the solution

vectors

[x] = [x °, xl, ... xk] (M.I)

Similarly, define the residual matrix

[RES] = [RESO, RES I, RES 2, ... REsk] (M.2)

Define the "linear combination vector"

_k

such that a new approximation X' is given by the matrix product

iT×, = [x]

and the corresponding residual is

RES' = IRES]

_o_
. i
• I

• i
fk _

(tl.3)

(M.4)
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Note that we can write

RES' = R - AX'

= R - A[X]

fo

o

fk

k

= R(l - F. fi) + [(R - AX°),(R - AXI), .-- (R - AXI)]
i=O

= R(1 -
k
Z fi ) + [REsO, RESt" "'" RESk]

i=O

fO

Therefore, by choosing

k-1

fk = (i - Z fi )
i=O

the first term will disappear, and a new residual is given by
m

fo

RES' = IRES] fk-I

l - fo - "'" - fk-1_

Define (k+l) x (k+1) "modified" unit matrix 11 by

(M.S)

(M.6)

(M.7)

M-2
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l

l 0

0

-I -I -I ... -I 1

from which the linear combination vector can be written:

-fol
11

-fo

fk-1

= 11

(_4.8)

(M.9)

where F is the (k x I) vector

-IF = , iO

fk-

The new residual vector RES' can now be written as a matrix product involving

the old residual matrix and the unknown vector F in the form (using Eq. (t.I.4))

_F _ (t4.I0)

RES'--[RES]{II]LI

Define the norm of this vector, fIRES'If by

T

JIRES'If2 = RES' • RES'

= IFT l] [IiIT [RES]T IRES] [Il] L l (ti.ll)
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The r_ght-hand side of this equation is a quadratic non-negative (scalar)

function of the k unknowns fo' f] "'" fk-1" The minimum value must therefore

occur at the point at which

JJRES'II2 = 0 for i = O, ... k-l.

This will therefore provide k linear equations which can be solved to minimize

Eq. (t_.ll).

Calculation of Partial Derivatives of IIRES'II2

First define the symmetric matrix P by

P = IRES]T IRES]

i.e. P = [Pij], where Pij = RESi " RESj (H.12)

(scalar product of ith and jth residual vectors). Now partition the matrix P

in the following manner:

p

PI l PI2

(kxk) (kxl)

pI
12 P22

(Ixk) (Ixl)

(M.13)

so that PII = scalar products between all of the residuals RES° ... RES k-l,

while Pl2 consists of scalar products between latest residual RES k, and all of

earlier residuals, RES ° ... RES k-l, and P22 is scalar llREskll 2.

Next define the symmetric matrix Q by

O =[II]T [P] [I'],

and again partition the matrix Q to separate the last row and column:

(M.14)
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ql I Q12

(kxk) (kxl)

QT2 Q22

(Ixk) (Ixl)

-1

o

Pll

-l

1 PT2

a

P12

P22

Straightforward matrix multiplication can show that:

or

QII = Pll + Pl2 I-lIT + [-I]P_2 + P2Z[-I][-I]T

= Pl - Pl2 i " Pl2j + P22
qllij lij

[-l...-l]

0

0

(M.15)

l
-J

(H.16)

and

Or

Q12 = PI2 + P22 [-I]

q12 i = Pl _ " P22"i

(M.17)

and Q22 = P22

Eq. (M.II) now can be written

fIRES,If2 = [FT I]
(H.18)

and partial differentiation of this expression with respect to fo' f1' "'"

fk-l provides a set of k linear equations:

QIIF + Ql2 = 0

(I_.19)

or QIIF = "QI2

the solution of which provides the unknown k acceleration coefficients.

Given this solution, we can define the acceleration vector

2274H
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F !

,o 1
• !

' fk-1 11 - fo "'" -fk-1

from which the new so]utioa X' is given by

and
x' = [X]F'

RES' = [RES]F'

(M.20)

(M.21)
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APPENDIX N

THE COMPRESSIBILITY CORRECTION

pond to physical conditions in the region of interest.

equal to a_ and the average density ratio c is

c =_---= 0.6339 (N.I)

Pt

If this occurs the point is labeled ,choked" on the output.

If Vi < a_, it is used as it stands to compute (P/Pt) by an iterative

procedure. The iterative equation is

)2 2.5

E

The user inputs the average incompressible velocity Vi, which should corres-
If Vi > a_, Vi is set

with initial value E = I.

Finally, the compressible velocity magnitude V is calculated from

(N.3)
, l m

V :V i (_) , m =V_.

a

where Vi is the magnitude o. the local equivalent incompressible velocity

(Section 3.3). The direction of local velocity is not changed.

It will be seen in Appendix O, Eq. (0.20), that an equivalent incompressible
For compatibility at

S

average velocity VC is computed at the control station.

the control station, the input should insure that

(N.4)

or the computed surface Mach number will not agree with that input for the

control station. (This is also the default.) This seemingly contradictory

flexibility is allowed to improve results if the region of interest is far

from the control station..

N-1
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APPENDIX 0

OPTIONS OF THE COMBINATION PROGRAM

0.I Incompressible Option

If the flow is incompressible, this option is selected and only the following

quantities are input:

V
GO

freestream velocity

V
C

Vef

average velocity at the control station

reference velocity used in computing pressure coefficier,t

a angle of attack

B angle of yaw

0.2 Freestream Conditions

For compressible flow the freestream conditions are defined by inputting angle

of attack _, angle of yaw B, and three additional quantities:

either velocity V or Mach number M_

either total pressure Pt or static pressure Ps

either total temperature Tt or static temperature Ts

Then the preliminary calculations are as follows:

0.2.1 M° Input

(a) If Pt is input, Ps is given by

2 -3/5
Ps = Pt (I + _ M) (o.I)
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If Ps is input, Pt is given by
2 3/5

Pt = Ps (1 + _ 11)

If neither is input, the default is

Pt = 2116.23

and Ps is as above.

(0.2)

(0.3)

(b) If Tt is input, Ts is given by
-l

Ts = Tt(l + 1M 2) (0.4)

If Ts is input, Tt is given by

Tt-- Ts(l + _I12) Co.5)

If neither is input, the default is

Tt = 518.67 (0.6)

and T s is as above.

In either case stagnation and freestream sound speeds at and as are calculated

from

and V, from

at = 4g ,/l"_ , as = 4g _ (0.7)

2 -I/2
V = atM® (I + _H ) (0.8)

0.2.2 V, Input

(a) If Tt is input, at is given by

!_o is then calculated from

V
M - _[

a t

at = 49

2 -112

(0.9)
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(b)

The renainder of the calculation proceeds as in 0.2.1 above.

If Ts is input, as is given by

as : 49 _s

and tl. by

)Io : VJa s

The remainder of the calculation proceeds as in 0.2.1 above.

(0.II)

(o.12)

0.2.3 Additional Freestream Quantities

Built into the program are constants

g = 32.174

R = 1715.63

The following quantities are calculated:

Total density:

Static density:

Pt

Pt =_t

Ps

Ps = R_s

Dynamic pressure:

Pressure ratio:

Density ratio:

Temperature/sea-level ratio:

Pressure/sea-level ratio:

P ,)

q_ = 0.7Pt (I_t) M_

Ps/Pt

ps/Pt

Tt

Pt

= )116.23

(o.13)

(0.13)



Critical speed: a, = at/v_-2

tlaximum velocity: VBa x = v_a t

Equivalent incompressible freestream velocity:

Equivalent incompressible critical velocity:

0.2.4 Summary

I

a, = 0.6339a*.

Three freestream conditons are input: V= or M®, Pt or Ps' Tt or

Ts (or default values). Calculated and saved are

V=, M=, Pt' Ps' Tt' Ts' at' as

Pt' PS' q-" Ps/Pt' Ps/Pt" B, 6

! !

a., Vraax, V , a.

(0.14)

Nineteen quantities all together.

0.3 Control Station Conditions

Input consists of one of the following three quantities:

v_ inlet mass flow rate

Vc average velocity

H average Mach number
c

The remaining two must be calculated plus some additional quantities.

2274H
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0.3.1 Vc Input

Pc is given by

PC

Z/5

= Pt [ l _ ('_'_02_ ]
(o.15)

by

AFp(k)
= gPcgc_

(0.16)

and Mc by

M c

Vc Vc 2 -I/2 (0.17)

0.3.2 Mc Input

Yc is given by
-I12

Then Pc and ¢ are obtained as in 0.3.1 above.

(0.18)

0.3.3 % Input

Here Vc must be calculated iteratively by solving the equation

Vc = g(AFp(k)/144}p t [I - I/2_

starting with Vc = O.

Once Vc is known, Mc and Pc are obtained as in 0.3.1 above.

21 4H
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0.3.4 Additional Control Station Quantities.

These are calculated as follows:

Pressure ratio:

Density ratio:

Dynamic pressure:

Velocity ratio:

Corrected mass flow:

(Pc/Pt) = [ I - _ (_t)2]

_'c/Pt

P

qc = O'7Pt (_t) M2c

VJVc

m

,/e

-T

Equivalent incompressible average velocity:

3.5

Pc

v;--vc (_t)

0.3.5 Summary

One quantity, _, Vc, or Mc is input. Quantities saveo are

w' Vc' Mc" Pc' (Pc/Pt)' (Pc/Pt)" qc' (VJVc)' Wcor" V_

a total of ten quantities.

(0.20)

(0.21)
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APPENDIX P

ORGANIZATION OF THE INPUT POINTS

The input to this )rogram consists of the coordinates of a number of points.

These points define the surface of the three-dimensional inlet around which the

flow is to be computed. For the purpose of organizing these points for compu-

tation, each point is assigned a pair of integers, m and n. These integers

need not be input, but their use must be understood to insure the correctness

of the input and to facilitate the interpretation of the output.

For each point, n identifies the "column" of points to which it belongs, while

m identifies Its position in the "column," i.e, the "row." The first point of

a "column" :!_ays has m = I. To insure that the program will compute outward

norn_3 vectors, the following condition must be satisfied by the input points.

If an Jbserver is located in the flow and is oriented so that locally he sees

points on the surface with m values increasing upward, he must also see n val-

ues increasing toward the right. Examples of correct and incorrect input are

shown in Fig. 34(a). In this figure the flowfield lies about the paper, while

the interior of the body lies below the paper. Occasionally, it happens that

despite all care a body is input incorrectly. If the entire body is input

incorrectly - not some sections correctly and some incorrectly - the difficulty

can be remedied by changing the sign of one coordinate of a11 the input points.

This trick will give a correctly input body of the proper shape at perhaps a

peculiar location. Otherwise, the input will have to be done over. If the

inlet is input correctly (Step 2), but a cross-sectio_ (Step 4) is input so

that its normal vector points upstream, the combined flow will be correct, but

the flux at the cross section will be negative. Clearly a control station with

the wrong normal vector invalidates the calculation (Step 4).

The body surface is imagined divided into sections, which may be actual physi-

cal divisions or may be selected for convenience. A section is defined as

consisting of a group of at least two n-lines. Within each _ction the n-lines

are input in order to increasing n. On each n-line the points are input in

order of increasing m. All n-lines in a section must have the same number of

points, but this may vary from section to section. The first n-line of the

first section is n = I. From then on the n-lines may be thought of as numbered
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c ecutively through all sections, i.e., the numbering is soL begun over at

the beginning of each section. Elements will be formed thai _re associated

with points on every n-line except those that are last in their respective

sections. Points on these latter n-lines are used only to form elements

associated with points on the next lowest n-lines.

To illustrate this procedure, consider the plan view of a body shown in Fig.

34(b). This body has been divided into four sections, as shown in the figure.

The first section contains four n-lines, n = 1, 2, 3, 4; the second, five

n-lines, n = 5, 6, 7, 8, 9; the third three n-lines, n = lO, II, 12; and the

fourth three n-lines; n = 13, 14, 15. The number of points on each n-line are:

Section = 1 2 3 4

tl=4 7 4 2

Notice that the line n : 4 has only four points, the points m = 1, 2, 3, 4 and

the m-grid of Section 1, which is listed in the figure along the n = i line.

The lines n = 4 and n _ 5 are physically identical. _ of the points on the

two lines are physically identical but correspond to different values of m.

This is of no consequence. In this scheme sections are completely independent.

No elements are computed corresponding to points on lines n = 4, 9, 12, 15.

I

There is no restriction that the m and n lines of different sections have to

be roughly parallel. The arrangement shown in Fig. 34(c) is permissible.
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